README.md 17.3 KB
Newer Older
Z
zhanghan 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227
English | [简体中文](./README.zh.md)

## _ERNIE-GEN_: An Enhanced Multi-Flow Pre-training and Fine-tuning Framework for Natural Language Generation

- [Proposed Generation Framework](#proposed-generation-framework)
- [Pre-trained Models](#pre-trained-models)
- [Fine-tuning on Downstream Tasks](#fine-tuning-on-downstream-tasks)
  * [Abstractive Summarization](#abstractive-summarization)
  * [Question Generation](#question-generation)
  * [Generative Dialogue Response](#generative-dialogue-response)
  * [Generative Question Answering](#generative-question-answering)
- [Usage](#usage)
  * [Install PaddlePaddle](#install-paddlepaddle)
  * [Fine-tuning](#fine-tuning)
  * [Employ Dynamic Computation Graph](#employ-dynamic-computation-graph)
  * [The ERNIE 1.0 is avaliable](#the-ernie-10-is-avaliable-for-chinese-generation-tasks)
- [Citation](#citation)

For technical description of the algorithm, please see our paper:
>[_**ERNIE-GEN:An Enhanced Multi-Flow Pre-training and Fine-tuning Framework for Natural Language Generation**_](https://arxiv.org/abs/2001.11314.pdf)
>
>Dongling Xiao\*, Han Zhang\*, Yukun Li, Yu Sun, Hao Tian, Hua Wu, Haifeng Wang (\* : equal contribution)
>
>Preprint January 2020
>
>Accepted by **IJCAI-2020**

![ERNIE-GEN](https://img.shields.io/badge/Pretraining-Generation-green) ![Gigaword](https://img.shields.io/badge/Abstractive%20Summarization-Gigaword-yellow) ![Gigaword](https://img.shields.io/badge/Abstractive%20Summarization-CNN/Daily%20Mail-blue) ![SQuAD](https://img.shields.io/badge/Question%20Generation-SQuAD-green) ![Personal-Chat](https://img.shields.io/badge/Dialogue%20Response-Personal%20Chat-yellowgreen) ![CoQA](https://img.shields.io/badge/Generative%20Question%20Answering-CoQA-orange) 
---
**[ERNIE-GEN](https://arxiv.org/abs/2001.11314.pdf) is a multi-flow language generation framework for both pre-training and fine-tuning.** We propose a novel **span-by-span generation** pre-training task to enable the model to **generate a semantically-complete span** at each step rather than a word, in light of the fact that entities, phrases in human writing are organized in a coherent manner. An **infilling generation mechanism** and a **noise-aware generation method** are incorporated into both pre-training and fine-tuning to alleviate **the problem of exposure bias**. In the pre-training phase, ERNIE-GEN adopts a **multi-granularity target fragments sampling** strategy to force decoder to rely more on the encoder representations other than the previous generated words to enhancing the correlation between encoder and decoder.

## Proposed Generation Framework

We construct three novel methods to enhance the language generation ability:

- **Span-by-span Generation Pre-training Task**:  to enable model to generate a semantically-complete span at each step rather than a word.
- **Infilling Genration and Noise-aware Generation**:  to alleviate the problem of exposure bias.
- **Multi-Granularity Target Fragments**:  to enhance the correlation between encoder and decoder during pre-training.

Specifically, the span-by-span generation task and word-by-word generation task based on infilling generation mechanism are impemented by a carefully designed **Multi-Flow Attention** architecture as shown below.

![multi-flow-attention](.meta/multi-flow-attention.png)

## Pre-trained Models

We release the checkpoints for **ERNIE-GEN _base_** model and **ERNIE-GEN _large_** model which are both pre-trained on English Wikipedia and [BookCorpus](https://arxiv.org/abs/1506.06724) (totally 16GB). Besides, **ERNIE-GEN _large_** pre-trained on the 160GB corpus (used by [RoBERTa](https://arxiv.org/abs/1907.11692) and [BART](https://arxiv.org/abs/1910.13461)) is available as well.

- [**ERNIE-GEN _base_**](https://ernie.bj.bcebos.com/ernie_gen_base.tgz) (_lowercased | 12-layer, 768-hidden, 12-heads, 110M parameters_)
- [**ERNIE-GEN _large_**](https://ernie.bj.bcebos.com/ernie_gen_large.tgz) (_lowercased | 24-layer, 1024-hidden, 16-heads, 340M parameters_)
- [**ERNIE-GEN _large with 160G_**](https://ernie.bj.bcebos.com/ernie_gen_large_160g.tgz) (_lowercased | 24-layer, 1024-hidden, 16-heads, 340M parameters_)


## Fine-tuning on Downstream Tasks

We compare the performance of [ERNIE-GEN](https://arxiv.org/pdf/2001.11314.pdf) with the existing SOTA pre-training models for natural language generation ([UniLM](https://arxiv.org/abs/1905.03197), [MASS](https://arxiv.org/abs/1905.02450), [PEGASUS](https://arxiv.org/abs/1912.08777), [BART](https://arxiv.org/abs/1910.13461) and [T5](https://arxiv.org/abs/1910.10683)) on 5 genration tasks, including abstractive summarization (**_Gigaword_** and **_CNN/DailyMail_**), question generation (**_SQuAD_**), dialogue generation (**_Persona-Chat_**) and generative question answering (**_CoQA_**). 

### Abstractive Summarization 

- _**Gigaword**_

The results on Gigaword-10k (10K examples of Gigaword) are presented as follows:

| Model                                                     | <strong>Data / Params</strong> | <strong>Rouge-1</strong> | <strong>Rouge-2</strong> | <strong>Rouge-L</strong> |
| :-------------------------------------------------------- | :----------------------------: | :----------------------: | :----------------------: | :----------------------: |
| UniLM                 |           16G / 340M           |          34.21           |          15.28           |          31.54           |
| **ENRIE-GEN** _base_  |           16G / 110M           |          33.75           |          15.23           |          31.35           |
| **ERNIE-GEN** _large_ |           16G / 340M           |        35.05         |        16.10         |        32.50         |
| **ERNIE-GEN** _large_ (160G) |           160G / 340M           |        **35.51**         |        **16.79**         |        **33.23**         |

The results on Gigaword are presented as follows: 

| Model                                                     | <strong>Data / Params</strong> | <strong>Rouge-1</strong> | <strong>Rouge-2</strong> | <strong>Rouge-L</strong> |
| :-------------------------------------------------------- | :----------------------------: | :----------------------: | :----------------------: | :----------------------: |
| MASS                  |           18G / 160M           |          38.73           |          19.71           |          35.96           |
| BERTSHARE             |           16G / 110M           |          38.13           |          19.81           |          35.62           |
| UniLM                |           16G / 340M           |          38.45           |          19.45           |          35.75           |
| PEGASUS (_C4_)        |          750G / 568M           |          38.75           |          19.96           |          36.14           |
| PEGASUS (_HugeNews_)  |          3.8T / 568M           |          39.12           |          19.86           |          36.24           |
| **ENRIE-GEN** _base_  |           16G / 110M           |          38.83           |          20.04           |          36.20           |
| **ERNIE-GEN** _large_ |           16G / 340M           |        39.25         |        20.25         |        36.53         |
| **ERNIE-GEN** _large_ (160G) |           160G / 340M           |        **39.46**         |        **20.34**         |        **36.74**         |

We preprocess the raw Gigaword dataset following UniLM, the preprocessed data is avalilable at this [Gigaword](https://ernie.bj.bcebos.com/gigaword.tgz).

- _**CNN/Daily Mail**_

The results on CNN/Daily Mail are presented as follows: 

| <strong>Model</strong>                                    | Data / Params | <strong>Rouge-1</strong> | <strong>Rouge-2</strong> | <strong>Rouge-L</strong> |
| :-------------------------------------------------------- | :-----------: | :----------------------: | :----------------------: | :----------------------: |
| MASS                  |  18G / 160M   |          42.12           |          19.50           |          39.01           |
| UniLM                 |  16G / 340M   |          43.33           |          20.21           |          40.51           |
| T5 _large_            |  750G / 340M  |          42.50           |          20.68           |          39.75           |
| T5 _xlarge_           |  750G / 11B   |          43.52           |        **21.55**         |          40.69           |
| BART                  |  160G / 400M  |          44.16           |          21.28           |          40.90           |
| PEGASUS (_C4_)        |  750G / 568M  |          43.90           |          21.20           |          40.76           |
| PEGASUS (_HugeNews_)  |  3.8T / 568M  |          44.17           |          21.47           |          41.11           |
| **ENRIE-GEN** _base_  |  16G / 110M   |          42.30           |          19.92           |          39.68           |
| **ENRIE-GEN** _large_ |  16G / 340M   |          44.02           |          21.17           |          41.26           |
| **ENRIE-GEN** _large_ (160G) |  160G / 340M   |        **44.31**         |          21.35           |        **41.60**         |

We preprocess the raw CNN/Daily Mail dataset following UniLM, the preprocessed data is avalilable at this [CNN/Daily Mail](https://ernie.bj.bcebos.com/cnndm.tgz).

### Question Generation

- _**SQuAD**_

The results on the [SQuAD 1.1](https://arxiv.org/abs/1806.03822) dataset following the data split in [[Du et al., 2017]](https://arxiv.org/pdf/1705.00106.pdf) are presented as follows:

| Model                                                        | <strong>BLEU-4</strong> | <strong>METEOR</strong> | <strong>Rouge-L</strong> |
| :----------------------------------------------------------- | :----------------------: | :----------------------: | :----------------------: |
| [SemQG](https://arxiv.org/abs/1909.06356)                    |          18.37           |          22.65           |          46.68           |
| UniLM _large_ (beam size=1) |          22.12           |          25.06           |          51.07           |
| **ENRIE-GEN** _base_ (beam size=1) |          22.28           |          25.13           |          50.38           |
| **ERNIE-GEN** _large_ (beam size=1) |        24.03         |        26.31         |        52.36         |
| **ERNIE-GEN** _large_ (beam size=5) |        25.40         |        **26.92**         |        52.84         |
| **ERNIE-GEN** _large_ (beam size=5) + (160G) |        **25.41**         |        26.77         |        **52.91**         |

The results following the reversed dev-test data split in [[Zhao et al., 2018]](https://www.aclweb.org/anthology/D18-1424/) are presented as follows:

| Model                                                        | <strong>BLEU-4</strong> | <strong>METEOR</strong> | <strong>Rouge-L</strong> |
| :----------------------------------------------------------- | :----------------------: | :----------------------: | :----------------------: |
| SemQG                    |          20.76           |          24.20           |          48.91           |
| UniLM _large_ (beam size=1) |          23.75           |          25.61           |          52.04           |
| **ENRIE-GEN** _base_ (beam size=1) |          23.52           |          25.61           |          51.45           |
| **ERNIE-GEN** _large_ (beam size=1) |        25.57         |        26.89         |        53.31         |
| **ERNIE-GEN** _large_ (beam size=5) |        26.95         |        **27.57**         |        53.77         |
| **ERNIE-GEN** _large_ (beam size=5) + (160G) |        **27.05**         |        27.43         |        **53.83**         |

*_Note that we also report the results with higher beam size to 5._

The preprocessed data for question generation task can be downloaded from [SQuAD](https://ernie.bj.bcebos.com/squad_qg.tgz).

### Generative Dialogue Response

- _**Personal-Chat**_

 Comparison with current state-of-the-art results on the multi-turn conversations task ([Persona-Chat](https://arxiv.org/abs/1801.07243)) is presented as follows:

| Model                                                     | <strong>BLEU-1</strong> | <strong>BLEU-2</strong> | <strong>Distinct-1</strong> | <strong>Distinct-2</strong> |
| :-------------------------------------------------------- | :---------------------: | :---------------------: | :-------------------------: | :---------------------------: |
| [LIC](https://arxiv.org/abs/1910.07931)                   |          40.5           |          32.0           |            0.019            | 0.113                       |
| [PLATO](https://arxiv.org/abs/1910.07931)                 |          45.8           |          35.7           |            0.012            | 0.064                       |
| PLATO _w/o latent_    |          40.6           |          31.5          |            0.021            | 0.121                    |
| **ERNIE-GEN** _large_ |        **46.8**         |        **36.4**         |          **0.023**          | **0.168**                   |

The training data can be downloaded from [Personal-Chat](https://ernie.bj.bcebos.com/persona_chat.tgz).

### Generative Question Answering

- _**CoQA**_

Results of development set on CoQA task is presented as follows:

| Model                                                     | F1-score |
| :-------------------------------------------------------- | :------: |
| [Seq2Seq](https://arxiv.org/abs/1910.07931)               |   27.5   |
| [PGNet](https://arxiv.org/abs/1910.07931)                 |   45.4   |
| UniLM _large_         |   82.5   |
| **ERNIE-GEN** _large_ | **84.5** |

We preprocess the raw [CoQA](https://arxiv.org/abs/1808.07042) dataset, the preprocessed data is avalilable at this [CoQA-preprocessed](https://ernie.bj.bcebos.com/coqa.tgz).

Finally, we also compared with a concurrent work [ProphetNet](https://arxiv.org/abs/2001.04063), the fine-tuning results on Gigaword, CNN/Daily Mail and SQuAD are reported as follows:

- _**Abstractive Summarization**_

| Model / Task                                                     | <strong>Data / Params</strong> | <strong>Gigaword</strong> |<strong>CNN/Daily Mail</strong>|
| :-------------------------------------------------------- | :----------------------------: | :----------------------: | :----------------------: |
| Metric                                                     | - | <strong>Rouge-1 / Rouge-2 / Rouge-L</strong> |<strong>Rouge-1 / Rouge-2 / Rouge-L</strong>|
| **ProphetNet** _large_ (160G) |           160G / 340M           |     **39.51** / **20.42** / 36.69       |44.20 / 21.17 / 41.30|
| **ERNIE-GEN** _large_ (160G) |           160G / 340M           |        39.46 / 20.34 / **36.74**         |**44.31** / **21.35** / **41.60**|

- _**Question Generation**_

| Model                                                     | <strong>Data / Params</strong> | <strong>BLEU-4 / METEOR / Rouge-L</strong> |<strong>BLEU-4 / METEOR / Rouge-L</strong>|
| :-------------------------------------------------------- | :----------------------------: | :----------------------: |:----------------------: |
| Data split                                                     | - | <strong>Original</strong> |<strong>Reversed dev-test</strong>|
| **ProphetNet** _large_ (16G) |           16G / 340M           |     25.01 / 26.83 / 52.57       |26.72 / **27.64** / **53.79** |
| **ERNIE-GEN** _large_ (16G) |           16G / 340M           |        **25.40** / **26.92** / **52.84**       |**26.95** / 27.57 / **53.77**|

## Usage

### Install PaddlePaddle

This code base has been tested with Paddle Fluid 1.7 with Python 2.7. Other dependency of ERNIE-GEN is listed in `requirements.txt`, you can install it by
```script
pip install -r requirements.txt
```

### Fine-tuning
Please update LD_LIBRARY_PATH about CUDA, cuDNN, NCCL2 before running ERNIE-GEN. We have put the parameter configurations of the above downstream tasks in `config/`. You can easily run finetuning through these configuration files. For example, you can finetune ERNIE-GEN base model on Gigaword by
```script
MODEL="base"      # base or large or large_160g
TASK="gigaword"   # cnndm, coqa, gigaword, squad_qg or persona-chat
sh run_seq2seq.sh ./configs/${MODEL}/${TASK}_conf
```
The log of training and the evaluation results are in `log/job.log.0`. To finetune on your own task data, you can refer to the data format we provide for processing your data.

Our fine-tuning experiments are carried on 8 NVIDIA V100 (32GB) GPUs. If your GPU memory is not enough, you can reduce the batch size in the corresponding configuration file.

**NOTICE: ** The actual total batch size is equal to `configured batch size * number of used gpus`.

### Employ Dynamic Computation Graph

The ERNIE-GEN code using dynamic graph is more concise and flexible, please refer to  [ERNIE-GEN Dygraph](https://github.com/PaddlePaddle/ERNIE/tree/develop/experimental/seq2seq) for specific use.

### The ERNIE 1.0 is avaliable for Chinese Generation Tasks

The ERNIE-GEN code is compatible with [ERNIE 1.0](https://ernie.bj.bcebos.com/ERNIE_1.0_max-len-512.tar.gz) model. After specifying the parameters related to the model and data in the configuration file, you can use ERNIE 1.0 to fine-tune chinese generation tasks.

## Citation

You can cite the paper as below:

```
@article{xiao2020ernie-gen,
  title={ERNIE-GEN: An Enhanced Multi-Flow Pre-training and Fine-tuning Framework for Natural Language Generation},
  author={Xiao, Dongling and Zhang, Han and Li, Yukun and Sun, Yu and Tian, Hao and Wu, Hua and Wang, Haifeng},
  journal={arXiv preprint arXiv:2001.11314},
  year={2020}
}
```