cmrc2018_eval.py 5.1 KB
Newer Older
T
tianxin 已提交
1
# -*- coding: utf-8 -*-
C
chenxuyi 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
T
tianxin 已提交
15 16 17 18 19 20 21
'''
Evaluation script for CMRC 2018
version: v5
Note: 
v5 formatted output, add usage description
v4 fixed segmentation issues
'''
C
chenxuyi 已提交
22 23
from __future__ import absolute_import
from __future__ import division
T
tianxin 已提交
24
from __future__ import print_function
C
chenxuyi 已提交
25 26 27
from __future__ import unicode_literals
from __future__ import absolute_import

T
tianxin 已提交
28 29 30 31 32 33 34 35 36 37 38 39
from collections import Counter, OrderedDict
import string
import re
import argparse
import json
import sys
import nltk
import pdb


# split Chinese with English
def mixed_segmentation(in_str, rm_punc=False):
C
chenxuyi 已提交
40
    in_str = in_str.lower().strip()
T
tianxin 已提交
41 42 43 44 45 46 47 48 49 50
    segs_out = []
    temp_str = ""
    sp_char = [
        '-', ':', '_', '*', '^', '/', '\\', '~', '`', '+', '=', ',', '。', ':',
        '?', '!', '“', '”', ';', '’', '《', '》', '……', '·', '、', '「', '」', '(',
        ')', '-', '~', '『', '』'
    ]
    for char in in_str:
        if rm_punc and char in sp_char:
            continue
C
chenxuyi 已提交
51
        if re.search(r'[\u4e00-\u9fa5]', char) or char in sp_char:
T
tianxin 已提交
52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69
            if temp_str != "":
                ss = nltk.word_tokenize(temp_str)
                segs_out.extend(ss)
                temp_str = ""
            segs_out.append(char)
        else:
            temp_str += char

    #handling last part
    if temp_str != "":
        ss = nltk.word_tokenize(temp_str)
        segs_out.extend(ss)

    return segs_out


# remove punctuation
def remove_punctuation(in_str):
C
chenxuyi 已提交
70
    in_str = in_str.lower().strip()
T
tianxin 已提交
71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120
    sp_char = [
        '-', ':', '_', '*', '^', '/', '\\', '~', '`', '+', '=', ',', '。', ':',
        '?', '!', '“', '”', ';', '’', '《', '》', '……', '·', '、', '「', '」', '(',
        ')', '-', '~', '『', '』'
    ]
    out_segs = []
    for char in in_str:
        if char in sp_char:
            continue
        else:
            out_segs.append(char)
    return ''.join(out_segs)


# find longest common string
def find_lcs(s1, s2):
    m = [[0 for i in range(len(s2) + 1)] for j in range(len(s1) + 1)]
    mmax = 0
    p = 0
    for i in range(len(s1)):
        for j in range(len(s2)):
            if s1[i] == s2[j]:
                m[i + 1][j + 1] = m[i][j] + 1
                if m[i + 1][j + 1] > mmax:
                    mmax = m[i + 1][j + 1]
                    p = i + 1
    return s1[p - mmax:p], mmax


#
def evaluate(ground_truth_file, prediction_file):
    f1 = 0
    em = 0
    total_count = 0
    skip_count = 0
    for instances in ground_truth_file["data"]:
        for instance in instances["paragraphs"]:
            context_text = instance['context'].strip()
            for qas in instance['qas']:
                total_count += 1
                query_id = qas['id'].strip()
                query_text = qas['question'].strip()
                answers = [ans["text"] for ans in qas["answers"]]

                if query_id not in prediction_file:
                    sys.stderr.write('Unanswered question: {}\n'.format(
                        query_id))
                    skip_count += 1
                    continue

C
chenxuyi 已提交
121
                prediction = prediction_file[query_id]
T
tianxin 已提交
122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157
                f1 += calc_f1_score(answers, prediction)
                em += calc_em_score(answers, prediction)

    f1_score = 100.0 * f1 / total_count
    em_score = 100.0 * em / total_count
    return f1_score, em_score, total_count, skip_count


def calc_f1_score(answers, prediction):
    f1_scores = []
    for ans in answers:
        ans_segs = mixed_segmentation(ans, rm_punc=True)
        prediction_segs = mixed_segmentation(prediction, rm_punc=True)
        lcs, lcs_len = find_lcs(ans_segs, prediction_segs)
        if lcs_len == 0:
            f1_scores.append(0)
            continue
        precision = 1.0 * lcs_len / len(prediction_segs)
        recall = 1.0 * lcs_len / len(ans_segs)
        f1 = (2 * precision * recall) / (precision + recall)
        f1_scores.append(f1)
    return max(f1_scores)


def calc_em_score(answers, prediction):
    em = 0
    for ans in answers:
        ans_ = remove_punctuation(ans)
        prediction_ = remove_punctuation(prediction)
        if ans_ == prediction_:
            em = 1
            break
    return em


def eval_file(dataset_file, prediction_file):
C
chenxuyi 已提交
158 159
    ground_truth_file = json.load(open(dataset_file, 'r'))
    prediction_file = json.load(open(prediction_file, 'r'))
T
tianxin 已提交
160 161 162 163 164 165 166 167 168 169
    F1, EM, TOTAL, SKIP = evaluate(ground_truth_file, prediction_file)
    AVG = (EM + F1) * 0.5
    return EM, F1, AVG, TOTAL


if __name__ == '__main__':
    EM, F1, AVG, TOTAL = eval_file(sys.argv[1], sys.argv[2])
    print(EM)
    print(F1)
    print(TOTAL)