utils.py 9.5 KB
Newer Older
P
pfZhu 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os 
import argparse
import logging
from pathlib import Path

import jsonlines
import numpy as np
import paddle
import soundfile as sf
import yaml
from timer import timer
from yacs.config import CfgNode
from paddlespeech.s2t.utils.dynamic_import import dynamic_import

from paddlespeech.t2s.exps.syn_utils import get_test_dataset
from paddlespeech.t2s.exps.syn_utils import get_voc_inference
from paddlespeech.t2s.utils import str2bool
from paddlespeech.t2s.frontend.zh_frontend import Frontend
from paddlespeech.t2s.models.fastspeech2 import FastSpeech2
from paddlespeech.t2s.models.fastspeech2 import FastSpeech2Inference
from paddlespeech.t2s.modules.normalizer import ZScore
from yacs.config import CfgNode
# new add
import paddle.nn.functional as F
from paddlespeech.t2s.modules.nets_utils import make_pad_mask
from paddlespeech.t2s.exps.syn_utils import get_frontend

O
oyjxer 已提交
41
from tools.parallel_wavegan_pretrained_vocoder import ParallelWaveGANPretrainedVocoder
P
pfZhu 已提交
42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
from sedit_arg_parser import parse_args

model_alias = {
    # acoustic model
    "speedyspeech":
    "paddlespeech.t2s.models.speedyspeech:SpeedySpeech",
    "speedyspeech_inference":
    "paddlespeech.t2s.models.speedyspeech:SpeedySpeechInference",
    "fastspeech2":
    "paddlespeech.t2s.models.fastspeech2:FastSpeech2",
    "fastspeech2_inference":
    "paddlespeech.t2s.models.fastspeech2:FastSpeech2Inference",
    "tacotron2":
    "paddlespeech.t2s.models.tacotron2:Tacotron2",
    "tacotron2_inference":
    "paddlespeech.t2s.models.tacotron2:Tacotron2Inference",
}





O
oyjxer 已提交
64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88
def is_chinese(ch):
    if u'\u4e00' <= ch <= u'\u9fff':
        return True
    else:
        return False


def build_vocoder_from_file(
    vocoder_config_file = None,
    vocoder_file = None,
    model = None,
    device = "cpu",
    ):
    # Build vocoder
    if str(vocoder_file).endswith(".pkl"):
        # If the extension is ".pkl", the model is trained with parallel_wavegan
        vocoder = ParallelWaveGANPretrainedVocoder(
            vocoder_file, vocoder_config_file
        )
        return vocoder.to(device)

    else:
        raise ValueError(f"{vocoder_file} is not supported format.")


P
pfZhu 已提交
89 90 91 92 93 94
def get_voc_out(mel, target_language="chinese"):
    # vocoder
    args = parse_args()

    assert target_language == "chinese" or target_language == "english", "In get_voc_out function, target_language is illegal..."
        
O
oyjxer 已提交
95
    # print("current vocoder: ", args.voc)
P
pfZhu 已提交
96 97
    with open(args.voc_config) as f:
        voc_config = CfgNode(yaml.safe_load(f))
P
pfZhu 已提交
98
    # print(voc_config)
P
pfZhu 已提交
99 100 101 102

    voc_inference = get_voc_inference(args, voc_config)

    mel = paddle.to_tensor(mel)
P
pfZhu 已提交
103
    # print("masked_mel: ", mel.shape)
P
pfZhu 已提交
104 105
    with paddle.no_grad():
        wav = voc_inference(mel)
P
pfZhu 已提交
106
    # print("shepe of wav (time x n_channels):%s"%wav.shape)   
P
pfZhu 已提交
107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163
    return np.squeeze(wav)

# dygraph
def get_am_inference(args, am_config):
    with open(args.phones_dict, "r") as f:
        phn_id = [line.strip().split() for line in f.readlines()]
    vocab_size = len(phn_id)
    # print("vocab_size:", vocab_size)

    tone_size = None
    if 'tones_dict' in args and args.tones_dict:
        with open(args.tones_dict, "r") as f:
            tone_id = [line.strip().split() for line in f.readlines()]
        tone_size = len(tone_id)
        print("tone_size:", tone_size)

    spk_num = None
    if 'speaker_dict' in args and args.speaker_dict:
        with open(args.speaker_dict, 'rt') as f:
            spk_id = [line.strip().split() for line in f.readlines()]
        spk_num = len(spk_id)
        print("spk_num:", spk_num)

    odim = am_config.n_mels
    # model: {model_name}_{dataset}
    am_name = args.am[:args.am.rindex('_')]
    am_dataset = args.am[args.am.rindex('_') + 1:]

    am_class = dynamic_import(am_name, model_alias)
    am_inference_class = dynamic_import(am_name + '_inference', model_alias)

    if am_name == 'fastspeech2':
        am = am_class(
            idim=vocab_size, odim=odim, spk_num=spk_num, **am_config["model"])
    elif am_name == 'speedyspeech':
        am = am_class(
            vocab_size=vocab_size,
            tone_size=tone_size,
            spk_num=spk_num,
            **am_config["model"])
    elif am_name == 'tacotron2':
        am = am_class(idim=vocab_size, odim=odim, **am_config["model"])

    am.set_state_dict(paddle.load(args.am_ckpt)["main_params"])
    am.eval()
    am_mu, am_std = np.load(args.am_stat)
    am_mu = paddle.to_tensor(am_mu)
    am_std = paddle.to_tensor(am_std)
    am_normalizer = ZScore(am_mu, am_std)
    am_inference = am_inference_class(am_normalizer, am)
    am_inference.eval()
    print("acoustic model done!")
    return am, am_inference, am_name, am_dataset, phn_id


def evaluate_durations(phns, target_language="chinese", fs=24000, hop_length=300):
    args = parse_args()
O
oyjxer 已提交
164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180

    if target_language == 'english':
        args.lang='en'
        args.am = "fastspeech2_ljspeech"
        args.am_config = "download/fastspeech2_nosil_ljspeech_ckpt_0.5/default.yaml"
        args.am_ckpt = "download/fastspeech2_nosil_ljspeech_ckpt_0.5/snapshot_iter_100000.pdz"
        args.am_stat = "download/fastspeech2_nosil_ljspeech_ckpt_0.5/speech_stats.npy"
        args.phones_dict = "download/fastspeech2_nosil_ljspeech_ckpt_0.5/phone_id_map.txt"

    elif target_language == 'chinese':
        args.lang='zh'
        args.am = "fastspeech2_csmsc"
        args.am_config="download/fastspeech2_conformer_baker_ckpt_0.5/conformer.yaml"
        args.am_ckpt = "download/fastspeech2_conformer_baker_ckpt_0.5/snapshot_iter_76000.pdz"
        args.am_stat = "download/fastspeech2_conformer_baker_ckpt_0.5/speech_stats.npy"
        args.phones_dict ="download/fastspeech2_conformer_baker_ckpt_0.5/phone_id_map.txt"

P
pfZhu 已提交
181
    # args = parser.parse_args(args=[])
P
pfZhu 已提交
182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201
    if args.ngpu == 0:
        paddle.set_device("cpu")
    elif args.ngpu > 0:
        paddle.set_device("gpu")
    else:
        print("ngpu should >= 0 !")


    
    assert target_language == "chinese" or target_language == "english", "In evaluate_durations function, target_language is illegal..."

    # Init body.
    with open(args.am_config) as f:
        am_config = CfgNode(yaml.safe_load(f))
    # print("========Config========")
    # print(am_config)
    # print("---------------------")
    # acoustic model
    am, am_inference, am_name, am_dataset,phn_id = get_am_inference(args, am_config)
    
P
pfZhu 已提交
202

P
pfZhu 已提交
203 204 205 206 207 208 209 210 211
    torch_phns = phns
    vocab_phones = {}
    for tone, id in phn_id:
        vocab_phones[tone] = int(id)
    # print("vocab_phones: ", len(vocab_phones))
    vocab_size = len(vocab_phones)
    phonemes = [
        phn if phn in vocab_phones else "sp" for phn in torch_phns
    ]
O
oyjxer 已提交
212

P
pfZhu 已提交
213 214 215 216 217 218 219 220 221 222 223
    phone_ids = [vocab_phones[item] for item in phonemes]
    phone_ids_new = phone_ids
    phone_ids_new.append(vocab_size-1)
    phone_ids_new = paddle.to_tensor(np.array(phone_ids_new, np.int64))
    normalized_mel, d_outs, p_outs, e_outs = am.inference(phone_ids_new, spk_id=None, spk_emb=None)
    pre_d_outs = d_outs
    phoneme_durations_new = pre_d_outs * hop_length / fs
    phoneme_durations_new = phoneme_durations_new.tolist()[:-1]
    return phoneme_durations_new


P
pfZhu 已提交
224

P
pfZhu 已提交
225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285
def sentence2phns(sentence, target_language="en"):
    args = parse_args()
    if target_language == 'en':
        args.lang='en'
        args.phones_dict = "download/fastspeech2_nosil_ljspeech_ckpt_0.5/phone_id_map.txt"
    elif target_language == 'zh':
        args.lang='zh'
        args.phones_dict="download/fastspeech2_conformer_baker_ckpt_0.5/phone_id_map.txt" 
    else:
        print("target_language should in {'zh', 'en'}!")
    
    frontend = get_frontend(args)
    merge_sentences = True
    get_tone_ids = False

    if target_language == 'zh':
        input_ids = frontend.get_input_ids(
            sentence,
            merge_sentences=merge_sentences,
            get_tone_ids=get_tone_ids,
            print_info=False)
        phone_ids = input_ids["phone_ids"]

        phonemes = frontend.get_phonemes(
            sentence, 
            merge_sentences=merge_sentences,
            print_info=False)
            
        return phonemes[0], input_ids["phone_ids"][0]

    elif target_language == 'en':
        phonemes = frontend.phoneticize(sentence)
        input_ids = frontend.get_input_ids(
            sentence, merge_sentences=merge_sentences)
        phone_ids = input_ids["phone_ids"]

        phones_list = []
        vocab_phones = {}
        punc = ":,;。?!“”‘’':,;.?!"
        with open(args.phones_dict, 'rt') as f:
            phn_id = [line.strip().split() for line in f.readlines()]
        for phn, id in phn_id:
            vocab_phones[phn] = int(id)

        phones = phonemes[1:-1]
        phones = [phn for phn in phones if not phn.isspace()]
        # replace unk phone with sp
        phones = [
            phn
            if (phn in vocab_phones and phn not in punc) else "sp"
            for phn in phones
        ]
        phones_list.append(phones)
        return phones_list[0], input_ids["phone_ids"][0] 

    else:
        print("lang should in {'zh', 'en'}!")