finetune_sentiment_analysis.py 8.1 KB
Newer Older
M
Meiyim 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
import re
import time
import logging
import json
from random import random
from tqdm import tqdm
from functools import reduce, partial
from pathlib import Path
from visualdl import LogWriter

import numpy as np
import logging
import argparse

import paddle as P

from propeller import log
import propeller.paddle as propeller

log.setLevel(logging.DEBUG)
logging.getLogger().setLevel(logging.DEBUG)

#from model.bert import BertConfig, BertModelLayer
from ernie.modeling_ernie import ErnieModel, ErnieModelForSequenceClassification
from ernie.tokenizing_ernie import ErnieTokenizer, ErnieTinyTokenizer
#from ernie.optimization import AdamW, LinearDecay
from demo.utils import create_if_not_exists, get_warmup_and_linear_decay

parser = argparse.ArgumentParser('classify model with ERNIE')
parser.add_argument(
    '--from_pretrained',
    type=Path,
    required=True,
    help='pretrained model directory or tag')
parser.add_argument(
    '--max_seqlen',
    type=int,
    default=128,
    help='max sentence length, should not greater than 512')
parser.add_argument('--bsz', type=int, default=32, help='batchsize')
parser.add_argument('--epoch', type=int, default=3, help='epoch')
parser.add_argument(
    '--data_dir',
    type=str,
    required=True,
    help='data directory includes train / develop data')
parser.add_argument(
    '--max_steps',
    type=int,
    required=True,
    help='max_train_steps, set this to EPOCH * NUM_SAMPLES / BATCH_SIZE')
parser.add_argument('--warmup_proportion', type=float, default=0.1)
parser.add_argument('--lr', type=float, default=5e-5, help='learning rate')
parser.add_argument('--eval', action='store_true')
parser.add_argument(
    '--save_dir', type=Path, required=True, help='model output directory')
M
Meiyim 已提交
72 73 74 75 76
parser.add_argument(
    '--init_checkpoint',
    type=str,
    default=None,
    help='checkpoint to warm start from')
M
Meiyim 已提交
77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128
parser.add_argument(
    '--wd', type=float, default=0.01, help='weight decay, aka L2 regularizer')
parser.add_argument(
    '--use_amp',
    action='store_true',
    help='only activate AMP(auto mixed precision accelatoin) on TensorCore compatible devices'
)

args = parser.parse_args()

tokenizer = ErnieTokenizer.from_pretrained(args.from_pretrained)
#tokenizer = ErnieTinyTokenizer.from_pretrained(args.from_pretrained)

model = ErnieModelForSequenceClassification.from_pretrained(
    args.from_pretrained, num_labels=3, name='')
if not args.eval:
    feature_column = propeller.data.FeatureColumns([
        propeller.data.TextColumn(
            'seg_a',
            unk_id=tokenizer.unk_id,
            vocab_dict=tokenizer.vocab,
            tokenizer=tokenizer.tokenize),
        propeller.data.LabelColumn('label'),
    ])

    def map_fn(seg_a, label):
        seg_a, _ = tokenizer.truncate(seg_a, [], seqlen=args.max_seqlen)
        sentence, segments = tokenizer.build_for_ernie(seg_a, [])
        return sentence, segments, label


    train_ds = feature_column.build_dataset('train', data_dir=os.path.join(args.data_dir, 'train'), shuffle=True, repeat=False, use_gz=False) \
                                   .map(map_fn) \
                                   .padded_batch(args.bsz)

    dev_ds = feature_column.build_dataset('dev', data_dir=os.path.join(args.data_dir, 'dev'), shuffle=False, repeat=False, use_gz=False) \
                                   .map(map_fn) \
                                   .padded_batch(args.bsz)

    g_clip = P.nn.ClipGradByGlobalNorm(1.0)  #experimental
    lr_scheduler = P.optimizer.lr.LambdaDecay(
        args.lr,
        get_warmup_and_linear_decay(
            args.max_steps, int(args.warmup_proportion * args.max_steps)))

    param_name_to_exclue_from_weight_decay = re.compile(
        r'.*layer_norm_scale|.*layer_norm_bias|.*b_0')

    opt = P.optimizer.AdamW(
        lr_scheduler,
        parameters=model.parameters(),
        weight_decay=args.wd,
129
        apply_decay_param_fun=lambda n: not param_name_to_exclue_from_weight_decay.match(n),
M
Meiyim 已提交
130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191
        grad_clip=g_clip)
    scaler = P.amp.GradScaler(enable=args.use_amp)
    with LogWriter(logdir=str(create_if_not_exists(args.save_dir /
                                                   'vdl'))) as log_writer:
        with P.amp.auto_cast(enable=args.use_amp):
            for epoch in range(args.epoch):
                for step, d in enumerate(
                        P.io.DataLoader(
                            train_ds, places=P.CUDAPlace(0), batch_size=None)):
                    ids, sids, label = d
                    loss, _ = model(ids, sids, labels=label)
                    loss = scaler.scale(loss)
                    loss.backward()
                    scaler.minimize(opt, loss)
                    model.clear_gradients()
                    lr_scheduler.step()

                    if step % 10 == 0:
                        _lr = lr_scheduler.get_lr()
                        if args.use_amp:
                            _l = (loss / scaler._scale).numpy()
                            msg = '[step-%d] train loss %.5f lr %.3e scaling %.3e' % (
                                step, _l, _lr, scaler._scale.numpy())
                        else:
                            _l = loss.numpy()
                            msg = '[step-%d] train loss %.5f lr %.3e' % (
                                step, _l, _lr)
                        log.debug(msg)
                        log_writer.add_scalar('loss', _l, step=step)
                        log_writer.add_scalar('lr', _lr, step=step)

                    if step % 100 == 0:
                        acc = []
                        with P.no_grad():
                            model.eval()
                            for step, d in enumerate(
                                    P.io.DataLoader(
                                        dev_ds,
                                        places=P.CUDAPlace(0),
                                        batch_size=None)):
                                ids, sids, label = d
                                loss, logits = model(ids, sids, labels=label)
                                a = (logits.argmax(-1) == label)
                                acc.append(a.numpy())
                            model.train()
                        acc = np.concatenate(acc).mean()
                        log_writer.add_scalar('eval/acc', acc, step=step)
                        log.debug('acc %.5f' % acc)
                        if args.save_dir is not None:
                            P.save(model.state_dict(),
                                   args.save_dir / 'ckpt.bin')
        if args.save_dir is not None:
            P.save(model.state_dict(), args.save_dir / 'ckpt.bin')
else:
    feature_column = propeller.data.FeatureColumns([
        propeller.data.TextColumn(
            'seg_a',
            unk_id=tokenizer.unk_id,
            vocab_dict=tokenizer.vocab,
            tokenizer=tokenizer.tokenize),
    ])

M
Meiyim 已提交
192
    sd = P.load(args.init_checkpoint)
M
Meiyim 已提交
193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210
    model.set_dict(sd)
    model.eval()

    def map_fn(seg_a):
        seg_a, _ = tokenizer.truncate(seg_a, [], seqlen=args.max_seqlen)
        sentence, segments = tokenizer.build_for_ernie(seg_a, [])
        return sentence, segments

    predict_ds = feature_column.build_dataset_from_stdin('predict') \
                                   .map(map_fn) \
                                   .padded_batch(args.bsz)

    for step, (ids, sids) in enumerate(
            P.io.DataLoader(
                predict_ds, places=P.CUDAPlace(0), batch_size=None)):
        _, logits = model(ids, sids)
        pred = logits.numpy().argmax(-1)
        print('\n'.join(map(str, pred.tolist())))