finetune_ner.py 9.9 KB
Newer Older
M
Meiyim 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
import re
import time
import logging
import six
import json
from random import random
from tqdm import tqdm
from collections import OrderedDict
from functools import reduce, partial
from pathlib import Path
from visualdl import LogWriter

import numpy as np
import multiprocessing
import pickle
import logging

from sklearn.metrics import f1_score
import paddle as P

from propeller import log
import propeller.paddle as propeller

log.setLevel(logging.DEBUG)
logging.getLogger().setLevel(logging.DEBUG)

from demo.utils import create_if_not_exists, get_warmup_and_linear_decay
from ernie.modeling_ernie import ErnieModel, ErnieModelForSequenceClassification, ErnieModelForTokenClassification
from ernie.tokenizing_ernie import ErnieTokenizer
#from ernie.optimization import AdamW, LinearDecay

parser = propeller.ArgumentParser('NER model with ERNIE')
parser.add_argument('--max_seqlen', type=int, default=256)
parser.add_argument('--bsz', type=int, default=32)
parser.add_argument('--data_dir', type=str, required=True)
parser.add_argument('--epoch', type=int, default=6)
parser.add_argument(
    '--warmup_proportion',
    type=float,
    default=0.1,
    help='if use_lr_decay is set, '
    'learning rate will raise to `lr` at `warmup_proportion` * `max_steps` and decay to 0. at `max_steps`'
)
parser.add_argument(
    '--max_steps',
    type=int,
    required=True,
    help='max_train_steps, set this to EPOCH * NUM_SAMPLES / BATCH_SIZE, used in learning rate scheduler'
)
parser.add_argument(
    '--use_amp',
    action='store_true',
    help='only activate AMP(auto mixed precision accelatoin) on TensorCore compatible devices'
)

parser.add_argument('--from_pretrained', type=Path, required=True)
parser.add_argument('--lr', type=float, default=5e-5, help='learning rate')
parser.add_argument(
    '--save_dir', type=Path, required=True, help='model output directory')
parser.add_argument(
    '--wd', type=float, default=0.01, help='weight decay, aka L2 regularizer')
args = parser.parse_args()

tokenizer = ErnieTokenizer.from_pretrained(args.from_pretrained)


def tokenizer_func(inputs):
    ret = inputs.split(b'\2')
    tokens, orig_pos = [], []
    for i, r in enumerate(ret):
        t = tokenizer.tokenize(r)
        for tt in t:
            tokens.append(tt)
            orig_pos.append(i)
    assert len(tokens) == len(orig_pos)
    return tokens + orig_pos


def tokenizer_func_for_label(inputs):
    return inputs.split(b'\2')


feature_map = {
    b"B-PER": 0,
    b"I-PER": 1,
    b"B-ORG": 2,
    b"I-ORG": 3,
    b"B-LOC": 4,
    b"I-LOC": 5,
    b"O": 6,
}
other_tag_id = feature_map[b'O']

feature_column = propeller.data.FeatureColumns([
    propeller.data.TextColumn(
        'text_a',
        unk_id=tokenizer.unk_id,
        vocab_dict=tokenizer.vocab,
        tokenizer=tokenizer_func), propeller.data.TextColumn(
            'label',
            unk_id=other_tag_id,
            vocab_dict=feature_map,
            tokenizer=tokenizer_func_for_label, )
])


def before(seg, label):
    seg, orig_pos = np.split(seg, 2)
    aligned_label = label[orig_pos]
    seg, _ = tokenizer.truncate(seg, [], args.max_seqlen)
    aligned_label, _ = tokenizer.truncate(aligned_label, [], args.max_seqlen)
    orig_pos, _ = tokenizer.truncate(orig_pos, [], args.max_seqlen)

    sentence, segments = tokenizer.build_for_ernie(
        seg
    )  #utils.data.build_1_pair(seg, max_seqlen=args.max_seqlen, cls_id=cls_id, sep_id=sep_id)
    aligned_label = np.concatenate([[0], aligned_label, [0]], 0)
    orig_pos = np.concatenate([[0], orig_pos, [0]])

    assert len(aligned_label) == len(sentence) == len(orig_pos), (
        len(aligned_label), len(sentence), len(orig_pos))  # alinged
    return sentence, segments, aligned_label, label, orig_pos

train_ds = feature_column.build_dataset('train', data_dir=os.path.join(args.data_dir, 'train'), shuffle=True, repeat=False, use_gz=False) \
                               .map(before) \
                               .padded_batch(args.bsz, (0,0,-100, other_tag_id + 1, 0)) \

dev_ds = feature_column.build_dataset('dev', data_dir=os.path.join(args.data_dir, 'dev'), shuffle=False, repeat=False, use_gz=False) \
                               .map(before) \
                               .padded_batch(args.bsz, (0,0,-100, other_tag_id + 1,0)) \

test_ds = feature_column.build_dataset('test', data_dir=os.path.join(args.data_dir, 'test'), shuffle=False, repeat=False, use_gz=False) \
                               .map(before) \
                               .padded_batch(args.bsz, (0,0,-100, other_tag_id + 1,0)) \


def evaluate(model, dataset):
    model.eval()
    with P.no_grad():
        chunkf1 = propeller.metrics.ChunkF1(None, None, None, len(feature_map))
        for step, (ids, sids, aligned_label, label, orig_pos
                   ) in enumerate(P.io.DataLoader(
                       dataset, batch_size=None)):
            loss, logits = model(ids, sids)
            #print('\n'.join(map(str, logits.numpy().tolist())))

            assert orig_pos.shape[0] == logits.shape[0] == ids.shape[
                0] == label.shape[0]
            for pos, lo, la, id in zip(orig_pos.numpy(),
                                       logits.numpy(),
                                       label.numpy(), ids.numpy()):
                _dic = OrderedDict()
                assert len(pos) == len(lo) == len(id)
                for _pos, _lo, _id in zip(pos, lo, id):
                    if _id > tokenizer.mask_id:  # [MASK] is the largest special token
                        _dic.setdefault(_pos, []).append(_lo)
                merged_lo = np.array(
                    [np.array(l).mean(0) for _, l in six.iteritems(_dic)])
                merged_preds = np.argmax(merged_lo, -1)
                la = la[np.where(la != (other_tag_id + 1))]  #remove pad
                if len(la) > len(merged_preds):
                    log.warn(
                        'accuracy loss due to truncation: label len:%d, truncate to %d'
                        % (len(la), len(merged_preds)))
                    merged_preds = np.pad(merged_preds,
                                          [0, len(la) - len(merged_preds)],
                                          mode='constant',
                                          constant_values=7)
                else:
                    assert len(la) == len(
                        merged_preds
                    ), 'expect label == prediction, got %d vs %d' % (
                        la.shape, merged_preds.shape)
                chunkf1.update((merged_preds, la, np.array(len(la))))
        #f1 = f1_score(np.concatenate(all_label), np.concatenate(all_pred), average='macro')
        f1 = chunkf1.eval()
    model.train()
    return f1


model = ErnieModelForTokenClassification.from_pretrained(
    args.from_pretrained,
    num_labels=len(feature_map),
    name='',
    has_pooler=False)

g_clip = P.nn.ClipGradByGlobalNorm(1.0)  #experimental
param_name_to_exclue_from_weight_decay = re.compile(
    r'.*layer_norm_scale|.*layer_norm_bias|.*b_0')
lr_scheduler = P.optimizer.lr.LambdaDecay(
    args.lr,
    get_warmup_and_linear_decay(args.max_steps,
                                int(args.warmup_proportion * args.max_steps)))
opt = P.optimizer.AdamW(
    lr_scheduler,
    parameters=model.parameters(),
    weight_decay=args.wd,
213
    apply_decay_param_fun=lambda n: not param_name_to_exclue_from_weight_decay.match(n),
M
Meiyim 已提交
214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258
    grad_clip=g_clip)

scaler = P.amp.GradScaler(enable=args.use_amp)
with LogWriter(
        logdir=str(create_if_not_exists(args.save_dir / 'vdl'))) as log_writer:
    with P.amp.auto_cast(enable=args.use_amp):
        for epoch in range(args.epoch):
            for step, (
                    ids, sids, aligned_label, label, orig_pos
            ) in enumerate(P.io.DataLoader(
                    train_ds, batch_size=None)):
                loss, logits = model(ids, sids, labels=aligned_label)
                #loss, logits = model(ids, sids, labels=aligned_label, loss_weights=P.cast(ids != 0, 'float32'))
                loss = scaler.scale(loss)
                loss.backward()
                scaler.minimize(opt, loss)
                model.clear_gradients()
                lr_scheduler.step()

                if step % 10 == 0:
                    _lr = lr_scheduler.get_lr()
                    if args.use_amp:
                        _l = (loss / scaler._scale).numpy()
                        msg = '[step-%d] train loss %.5f lr %.3e scaling %.3e' % (
                            step, _l, _lr, scaler._scale.numpy())
                    else:
                        _l = loss.numpy()
                        msg = '[step-%d] train loss %.5f lr %.3e' % (step, _l,
                                                                     _lr)
                    log.debug(msg)
                    log_writer.add_scalar('loss', _l, step=step)
                    log_writer.add_scalar('lr', _lr, step=step)

                if step % 100 == 0:
                    f1 = evaluate(model, dev_ds)
                    log.debug('eval f1: %.5f' % f1)
                    log_writer.add_scalar('eval/f1', f1, step=step)
                    if args.save_dir is not None:
                        P.save(model.state_dict(), args.save_dir / 'ckpt.bin')

f1 = evaluate(model, dev_ds)
log.debug('final eval f1: %.5f' % f1)
log_writer.add_scalar('eval/f1', f1, step=step)
if args.save_dir is not None:
    P.save(model.state_dict(), args.save_dir / 'ckpt.bin')