ernie.py 9.4 KB
Newer Older
Z
zhanghan17 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Ernie model."""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import json

import six
import paddle.fluid as fluid

from model.transformer_model import infilling_transformer, infilling_decode_transformer, pre_process_layer


class ErnieConfig(object):
    def __init__(self, config_path):
        self._config_dict = self._parse(config_path)

    def _parse(self, config_path):
        try:
            with open(config_path) as json_file:
                config_dict = json.load(json_file)
        except Exception:
            raise IOError("Error in parsing Ernie model config file '%s'" %
                          config_path)
        else:
            return config_dict

    def __getitem__(self, key):
        return self._config_dict.get(key, None)

    def __setitem__(self, key, value):
        self._config_dict[key] = value

    def print_config(self):
        for arg, value in sorted(six.iteritems(self._config_dict)):
            print('%s: %s' % (arg, value))
        print('------------------------------------------------')


class ErnieModel(object):
    def __init__(self,
                 emb_ids,
                 input_mask,
                 config,
                 weight_sharing=True,
                 use_fp16=False,
                 task_type="normal",
                 decoding=False,
                 gather_idx=None):

        self._emb_size = config['emb_size'] or config['hidden_size']
        self._hidden_size = config['hidden_size']
        self._n_layer = config['num_hidden_layers']
        self._n_head = config['num_attention_heads']
        self._voc_size = config['vocab_size']
        self._max_position_seq_len = config['max_position_embeddings']
        
        self._hidden_act = config['hidden_act']
        self._prepostprocess_dropout = config['hidden_dropout_prob']
        self._attention_dropout = config['attention_probs_dropout_prob']
        self._weight_sharing = weight_sharing
        self._task_type = task_type
        self._emb_vocab_size = {"word_embedding": self._voc_size,
                                "pos_embedding": self._max_position_seq_len}

        self._is_dialogue_task = (task_type == "dialog")
        if self._is_dialogue_task:
            self._role_type_size = config["role_type_size"]
            self._turn_type_size = config["turn_type_size"]
            self._emb_vocab_size["role_embedding"] = self._role_type_size
            self._emb_vocab_size["turn_embedding"] = self._turn_type_size
        else:
            self._sent_types = config['type_vocab_size']
            self._emb_vocab_size["sent_embedding"] = self._sent_types

        self._dtype = "float16" if use_fp16 else "float32"
        self._emb_dtype = "float32"

        self._epsilon = config['epsilon'] or 1e-5
        self._param_share = config['param_share'] or "normal"
        self._n_layer_per_block = config['n_layer_per_block'] or 1
        self._pre_encoder_cmd = config['pre_encoder_cmd'] or 'nd'
        self._preprocess_cmd = config['preprocess_cmd'] or ''
        self._postprocess_cmd= config['postprocess_cmd'] or 'dan'
        if self._hidden_size != self._emb_size:
            self._emb_mapping_in = True
        else:
            self._emb_mapping_in = config['emb_mapping_in'] or False

        self._decoding = decoding
        if decoding:
            self.caches = [{
                "k":
                fluid.layers.fill_constant_batch_size_like(
                    input=emb_ids["word_embedding"],
                    shape=[-1, 0, self._hidden_size],
                    dtype=self._dtype,
                    value=0),
                "v":
                fluid.layers.fill_constant_batch_size_like(
                    input=emb_ids["word_embedding"],
                    shape=[-1, 0, self._hidden_size],
                    dtype=self._dtype,
                    value=0),
            } for i in range(self._n_layer)]
        else:
            self.caches = None

        # Initialize all weigths by truncated normal initializer, and all biases
        # will be initialized by constant zero by default.
        self._param_initializer = fluid.initializer.TruncatedNormal(
            scale=config['initializer_range'])

        self._build_model(emb_ids, input_mask, gather_idx)

    def _gen_input(self, emb_ids, input_mask):
        emb_out = None
        for emb_name, emb_id in emb_ids.items():
            emb = fluid.layers.embedding(
                input=emb_id,
                size=[self._emb_vocab_size[emb_name], self._emb_size],
                dtype=self._emb_dtype,
                param_attr=fluid.ParamAttr(
                    name=emb_name, initializer=self._param_initializer))
            emb_out = emb_out + emb if emb_out else emb
        
        emb_out = pre_process_layer(
            emb_out,
            self._pre_encoder_cmd,
            self._prepostprocess_dropout,
            name="pre_encoder",
            epsilon=self._epsilon)
        if self._emb_mapping_in:
            emb_out = fluid.layers.fc(input=emb_out,
                          num_flatten_dims=2,
                          size=self._hidden_size,
                          param_attr=fluid.ParamAttr(
                              name='emb_hidden_mapping',
                              initializer=self._param_initializer),
                          bias_attr='emb_hidden_mapping_bias')
        if self._dtype is "float16":
            emb_out = fluid.layers.cast(x=emb_out, dtype=self._dtype)
            input_mask = fluid.layers.cast(x=input_mask, dtype=self._dtype)

        self_attn_mask = input_mask
        self_attn_mask = fluid.layers.scale(
            x=self_attn_mask, scale=1e4, bias=-1.0, bias_after_scale=False)
        n_head_self_attn_mask = fluid.layers.stack(
            x=[self_attn_mask] * self._n_head, axis=1)
        n_head_self_attn_mask.stop_gradient = True

        return emb_out, n_head_self_attn_mask


    def encode(self, emb_ids, input_mask, gather_idx=None, remove_query=True):
        # padding id in vocabulary must be set to 0
        if not self._decoding:
            emb_out, n_head_self_attn_mask = self._gen_input(emb_ids[0], input_mask[0])
            query_emb_out, n_head_query_attn_mask = self._gen_input(emb_ids[1], input_mask[1])
            enc_out = infilling_transformer(
                enc_input_kv=emb_out,
                enc_input_query=query_emb_out,
                attn_bias_kv=n_head_self_attn_mask,
                attn_bias_query=n_head_query_attn_mask,
                n_layer=self._n_layer,
                n_head=self._n_head,
                d_key=self._hidden_size // self._n_head,
                d_value=self._hidden_size // self._n_head,
                d_model=self._hidden_size,
                d_inner_hid=self._hidden_size * 4,
                prepostprocess_dropout=self._prepostprocess_dropout,
                attention_dropout=self._attention_dropout,
                relu_dropout=0,
                hidden_act=self._hidden_act,
                preprocess_cmd=self._preprocess_cmd,
                postprocess_cmd=self._postprocess_cmd,
                param_initializer=self._param_initializer,
                epsilon=self._epsilon,
                param_share=self._param_share,
                n_layer_per_block=self._n_layer_per_block,
                name='encoder')
        else:
            emb_out, n_head_self_attn_mask = self._gen_input(emb_ids, input_mask)
            enc_out = infilling_decode_transformer(
                enc_input=emb_out,
                attn_bias=n_head_self_attn_mask,
                n_layer=self._n_layer,
                n_head=self._n_head,
                d_key=self._hidden_size // self._n_head,
                d_value=self._hidden_size // self._n_head,
                d_model=self._hidden_size,
                d_inner_hid=self._hidden_size * 4,
                prepostprocess_dropout=self._prepostprocess_dropout,
                attention_dropout=self._attention_dropout,
                relu_dropout=0,
                hidden_act=self._hidden_act,
                preprocess_cmd=self._preprocess_cmd,
                postprocess_cmd=self._postprocess_cmd,
                param_initializer=self._param_initializer,
                epsilon=self._epsilon,
                param_share=self._param_share,
                n_layer_per_block=self._n_layer_per_block,
                name='encoder',
                caches=self.caches,
                gather_idx=gather_idx,
                remove_query=remove_query)

        if self._dtype == "float16":
            enc_out = fluid.layers.cast(
                x=enc_out, dtype=self._emb_dtype)
        return enc_out

    def _build_model(self, emb_ids, input_mask, gather_idx=None):
        self._enc_out = self.encode(emb_ids, input_mask, gather_idx, remove_query=False)

    def get_sequence_output(self):
        return self._enc_out