run_sequence_labeling.py 14.1 KB
Newer Older
T
tianxin04 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
#   Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Finetuning on classification tasks."""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
C
chenxuyi 已提交
19 20
from __future__ import unicode_literals
from __future__ import absolute_import
T
tianxin04 已提交
21 22 23

import os
import time
C
chenxuyi 已提交
24 25
import six
import logging
T
tianxin04 已提交
26
import multiprocessing
C
chenxuyi 已提交
27
from io import open
T
tianxin04 已提交
28

T
tianxin 已提交
29 30 31 32 33
# NOTE(paddle-dev): All of these flags should be
# set before `import paddle`. Otherwise, it would
# not take any effect.
os.environ['FLAGS_eager_delete_tensor_gb'] = '0'  # enable gc

T
tianxin04 已提交
34 35 36 37 38 39
import paddle.fluid as fluid

import reader.task_reader as task_reader
from model.ernie import ErnieConfig
from optimization import optimization
from utils.init import init_pretraining_params, init_checkpoint
C
chenxuyi 已提交
40 41
from utils.args import print_arguments, check_cuda, prepare_logger
from finetune.sequence_label import create_model, evaluate, predict, calculate_f1
T
format  
tianxin04 已提交
42
from finetune_args import parser
T
tianxin04 已提交
43 44

args = parser.parse_args()
C
chenxuyi 已提交
45
log = logging.getLogger()
T
tianxin04 已提交
46

T
format  
tianxin04 已提交
47

T
tianxin04 已提交
48 49 50 51 52
def main(args):
    ernie_config = ErnieConfig(args.ernie_config_path)
    ernie_config.print_config()

    if args.use_cuda:
C
chenxuyi 已提交
53 54 55
        dev_list = fluid.cuda_places()
        place = dev_list[0]
        dev_count = len(dev_list)
T
tianxin04 已提交
56 57 58 59
    else:
        place = fluid.CPUPlace()
        dev_count = int(os.environ.get('CPU_NUM', multiprocessing.cpu_count()))

T
format  
tianxin04 已提交
60 61 62 63 64 65
    reader = task_reader.SequenceLabelReader(
        vocab_path=args.vocab_path,
        label_map_config=args.label_map_config,
        max_seq_len=args.max_seq_len,
        do_lower_case=args.do_lower_case,
        in_tokens=args.in_tokens,
T
tianxin 已提交
66 67
        random_seed=args.random_seed,
        task_id=args.task_id)
T
tianxin04 已提交
68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87

    if not (args.do_train or args.do_val or args.do_test):
        raise ValueError("For args `do_train`, `do_val` and `do_test`, at "
                         "least one of them must be True.")

    startup_prog = fluid.Program()
    if args.random_seed is not None:
        startup_prog.random_seed = args.random_seed

    if args.do_train:
        train_data_generator = reader.data_generator(
            input_file=args.train_set,
            batch_size=args.batch_size,
            epoch=args.epoch,
            shuffle=True,
            phase="train")

        num_train_examples = reader.get_num_examples(args.train_set)

        if args.in_tokens:
C
chenxuyi 已提交
88 89 90
            if args.batch_size < args.max_seq_len:
                raise ValueError('if in_tokens=True, batch_size should greater than max_sqelen, got batch_size:%d seqlen:%d' % (args.batch_size, args.max_seq_len))

T
tianxin04 已提交
91 92 93 94 95 96
            max_train_steps = args.epoch * num_train_examples // (
                args.batch_size // args.max_seq_len) // dev_count
        else:
            max_train_steps = args.epoch * num_train_examples // args.batch_size // dev_count

        warmup_steps = int(max_train_steps * args.warmup_proportion)
C
chenxuyi 已提交
97 98 99 100
        log.info("Device count: %d" % dev_count)
        log.info("Num train examples: %d" % num_train_examples)
        log.info("Max train steps: %d" % max_train_steps)
        log.info("Num warmup steps: %d" % warmup_steps)
T
tianxin04 已提交
101 102 103 104 105 106 107 108 109

        train_program = fluid.Program()

        with fluid.program_guard(train_program, startup_prog):
            with fluid.unique_name.guard():
                train_pyreader, graph_vars = create_model(
                    args,
                    pyreader_name='train_reader',
                    ernie_config=ernie_config)
T
tianxin 已提交
110
                scheduled_lr, loss_scaling = optimization(
T
tianxin04 已提交
111 112 113 114 115 116 117 118
                    loss=graph_vars["loss"],
                    warmup_steps=warmup_steps,
                    num_train_steps=max_train_steps,
                    learning_rate=args.learning_rate,
                    train_program=train_program,
                    startup_prog=startup_prog,
                    weight_decay=args.weight_decay,
                    scheduler=args.lr_scheduler,
C
chenxuyi 已提交
119 120 121 122 123 124 125
		    use_fp16=args.use_fp16,
		    use_dynamic_loss_scaling=args.use_dynamic_loss_scaling,
		    init_loss_scaling=args.init_loss_scaling,
		    incr_every_n_steps=args.incr_every_n_steps,
		    decr_every_n_nan_or_inf=args.decr_every_n_nan_or_inf,
		    incr_ratio=args.incr_ratio,
		    decr_ratio=args.decr_ratio)
T
tianxin04 已提交
126 127 128 129 130 131 132 133 134

        if args.verbose:
            if args.in_tokens:
                lower_mem, upper_mem, unit = fluid.contrib.memory_usage(
                    program=train_program,
                    batch_size=args.batch_size // args.max_seq_len)
            else:
                lower_mem, upper_mem, unit = fluid.contrib.memory_usage(
                    program=train_program, batch_size=args.batch_size)
C
chenxuyi 已提交
135
            log.info("Theoretical memory usage in training: %.3f - %.3f %s" %
T
tianxin04 已提交
136 137 138 139 140 141 142 143 144 145 146 147 148
                  (lower_mem, upper_mem, unit))

    if args.do_val or args.do_test:
        test_prog = fluid.Program()
        with fluid.program_guard(test_prog, startup_prog):
            with fluid.unique_name.guard():
                test_pyreader, graph_vars = create_model(
                    args,
                    pyreader_name='test_reader',
                    ernie_config=ernie_config)

        test_prog = test_prog.clone(for_test=True)

C
chenxuyi 已提交
149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175
    nccl2_num_trainers = 1
    nccl2_trainer_id = 0
    if args.is_distributed:
        trainer_id = int(os.getenv("PADDLE_TRAINER_ID", "0"))
        worker_endpoints_env = os.getenv("PADDLE_TRAINER_ENDPOINTS")
        current_endpoint = os.getenv("PADDLE_CURRENT_ENDPOINT")
        worker_endpoints = worker_endpoints_env.split(",")
        trainers_num = len(worker_endpoints)
        
        log.info("worker_endpoints:{} trainers_num:{} current_endpoint:{} \
              trainer_id:{}".format(worker_endpoints, trainers_num,
                                    current_endpoint, trainer_id))

        # prepare nccl2 env.
        config = fluid.DistributeTranspilerConfig()
        config.mode = "nccl2"
        t = fluid.DistributeTranspiler(config=config)
        t.transpile(
            trainer_id,
            trainers=worker_endpoints_env,
            current_endpoint=current_endpoint,
            program=train_program if args.do_train else test_prog,
            startup_program=startup_prog)
        nccl2_num_trainers = trainers_num
        nccl2_trainer_id = trainer_id

    exe = fluid.Executor(place)
T
tianxin04 已提交
176 177 178 179
    exe.run(startup_prog)

    if args.do_train:
        if args.init_checkpoint and args.init_pretraining_params:
C
chenxuyi 已提交
180
            log.info(
T
tianxin04 已提交
181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215
                "WARNING: args 'init_checkpoint' and 'init_pretraining_params' "
                "both are set! Only arg 'init_checkpoint' is made valid.")
        if args.init_checkpoint:
            init_checkpoint(
                exe,
                args.init_checkpoint,
                main_program=startup_prog,
                use_fp16=args.use_fp16)
        elif args.init_pretraining_params:
            init_pretraining_params(
                exe,
                args.init_pretraining_params,
                main_program=startup_prog,
                use_fp16=args.use_fp16)
    elif args.do_val or args.do_test:
        if not args.init_checkpoint:
            raise ValueError("args 'init_checkpoint' should be set if"
                             "only doing validation or testing!")
        init_checkpoint(
            exe,
            args.init_checkpoint,
            main_program=startup_prog,
            use_fp16=args.use_fp16)

    if args.do_train:
        exec_strategy = fluid.ExecutionStrategy()
        if args.use_fast_executor:
            exec_strategy.use_experimental_executor = True
        exec_strategy.num_threads = dev_count
        exec_strategy.num_iteration_per_drop_scope = args.num_iteration_per_drop_scope

        train_exe = fluid.ParallelExecutor(
            use_cuda=args.use_cuda,
            loss_name=graph_vars["loss"].name,
            exec_strategy=exec_strategy,
C
chenxuyi 已提交
216 217 218
            main_program=train_program,
            num_trainers=nccl2_num_trainers,
            trainer_id=nccl2_trainer_id)
T
tianxin04 已提交
219 220 221 222 223 224 225 226 227 228 229 230 231 232

        train_pyreader.decorate_tensor_provider(train_data_generator)
    else:
        train_exe = None

    if args.do_val or args.do_test:
        test_exe = fluid.ParallelExecutor(
            use_cuda=args.use_cuda,
            main_program=test_prog,
            share_vars_from=train_exe)

    if args.do_train:
        train_pyreader.start()
        steps = 0
C
chenxuyi 已提交
233
        graph_vars["learning_rate"] = scheduled_lr
T
tianxin04 已提交
234 235 236 237 238 239 240 241

        time_begin = time.time()
        while True:
            try:
                steps += 1
                if steps % args.skip_steps != 0:
                    train_exe.run(fetch_list=[])
                else:
C
chenxuyi 已提交
242 243 244 245 246 247 248 249 250 251 252 253
                    fetch_list = [
                        graph_vars["num_infer"].name, graph_vars["num_label"].name,
                        graph_vars["num_correct"].name,
                        graph_vars["loss"].name,
                        graph_vars['learning_rate'].name,
                    ]
                    
                    out = train_exe.run(fetch_list=fetch_list)
                    num_infer, num_label, num_correct, np_loss, np_lr = out
                    lr = float(np_lr[0])
                    loss = np_loss.mean()
                    precision, recall, f1 = calculate_f1(num_label, num_infer, num_correct)
T
tianxin04 已提交
254
                    if args.verbose:
C
chenxuyi 已提交
255 256
                        log.info("train pyreader queue size: %d, learning rate: %f" % (train_pyreader.queue.size(),
                                lr if warmup_steps > 0 else args.learning_rate))
T
tianxin04 已提交
257

T
format  
tianxin04 已提交
258
                    current_example, current_epoch = reader.get_train_progress()
T
tianxin04 已提交
259 260
                    time_end = time.time()
                    used_time = time_end - time_begin
C
chenxuyi 已提交
261
                    log.info("epoch: %d, progress: %d/%d, step: %d, loss: %f, "
T
format  
tianxin04 已提交
262 263
                          "f1: %f, precision: %f, recall: %f, speed: %f steps/s"
                          % (current_epoch, current_example, num_train_examples,
C
chenxuyi 已提交
264
                             steps, loss, f1, precision, recall,
T
format  
tianxin04 已提交
265
                             args.skip_steps / used_time))
T
tianxin04 已提交
266 267
                    time_begin = time.time()

C
chenxuyi 已提交
268
                if nccl2_trainer_id == 0 and steps % args.save_steps == 0:
T
tianxin04 已提交
269 270 271 272
                    save_path = os.path.join(args.checkpoints,
                                             "step_" + str(steps))
                    fluid.io.save_persistables(exe, save_path, train_program)

C
chenxuyi 已提交
273
                if nccl2_trainer_id == 0 and steps % args.validation_steps == 0:
T
tianxin04 已提交
274 275
                    # evaluate dev set
                    if args.do_val:
C
chenxuyi 已提交
276 277
                        evaluate_wrapper(reader, exe, test_prog, test_pyreader, graph_vars,
                                current_epoch, steps)
T
tianxin04 已提交
278 279
                    # evaluate test set
                    if args.do_test:
C
chenxuyi 已提交
280 281 282
                        predict_wrapper(reader, exe, test_prog, test_pyreader, graph_vars,
                                current_epoch, steps)

T
tianxin04 已提交
283 284 285 286 287 288 289 290

            except fluid.core.EOFException:
                save_path = os.path.join(args.checkpoints, "step_" + str(steps))
                fluid.io.save_persistables(exe, save_path, train_program)
                train_pyreader.reset()
                break

    # final eval on dev set
C
chenxuyi 已提交
291 292 293
    if nccl2_trainer_id ==0 and args.do_val:
        evaluate_wrapper(reader, exe, test_prog, test_pyreader, graph_vars,
                current_epoch, 'final')
T
tianxin04 已提交
294

C
chenxuyi 已提交
295 296 297 298 299 300 301 302
    if nccl2_trainer_id == 0 and args.do_test:
        predict_wrapper(reader, exe, test_prog, test_pyreader, graph_vars,
                current_epoch, 'final')


def evaluate_wrapper(reader, exe, test_prog, test_pyreader, graph_vars,
                     epoch, steps):
    # evaluate dev set
C
chenxuyi 已提交
303
    batch_size = args.batch_size if args.predict_batch_size is None else args.predict_batch_size
C
chenxuyi 已提交
304
    for ds in args.dev_set.split(','): #single card eval
T
tianxin04 已提交
305 306
        test_pyreader.decorate_tensor_provider(
            reader.data_generator(
C
chenxuyi 已提交
307
                ds,
C
chenxuyi 已提交
308
                batch_size=batch_size,
T
tianxin04 已提交
309
                epoch=1,
C
chenxuyi 已提交
310
                dev_count=1,
T
tianxin04 已提交
311
                shuffle=False))
C
chenxuyi 已提交
312 313 314 315 316 317 318 319 320 321 322 323 324
        log.info("validation result of dataset {}:".format(ds))
        info = evaluate(exe, test_prog, test_pyreader, graph_vars,
                 args.num_labels)
        log.info(info + ', file: {}, epoch: {}, steps: {}'.format(
            ds, epoch, steps))


def predict_wrapper(reader, exe, test_prog, test_pyreader, graph_vars,
                    epoch, steps):
    test_sets = args.test_set.split(',')
    save_dirs = args.test_save.split(',')
    assert len(test_sets) == len(save_dirs), 'number of test_sets & test_save not match, got %d vs %d' % (len(test_sets), len(save_dirs))

C
chenxuyi 已提交
325
    batch_size = args.batch_size if args.predict_batch_size is None else args.predict_batch_size
C
chenxuyi 已提交
326 327 328
    for test_f, save_f in zip(test_sets, save_dirs):
        test_pyreader.decorate_tensor_provider(reader.data_generator(
                    test_f,
C
chenxuyi 已提交
329
                    batch_size=batch_size,
C
chenxuyi 已提交
330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348
                    epoch=1,
                    dev_count=1,
                    shuffle=False))

        save_path = save_f + '.' + str(epoch) + '.' + str(steps)
        log.info("testing {}, save to {}".format(test_f, save_path))
        res = predict(exe, test_prog, test_pyreader, graph_vars, dev_count=1)
        save_dir = os.path.dirname(save_path)
        if not os.path.exists(save_dir):
            os.makedirs(save_dir)

        tokenizer = reader.tokenizer
        rev_label_map = {v: k for k, v in six.iteritems(reader.label_map)}
        with open(save_path, 'w', encoding='utf8') as f:
            for id, s, p in res:
                id = ' '.join(tokenizer.convert_ids_to_tokens(id))
                p = ' '.join(['%.5f' % pp[ss] for ss, pp in zip(s, p)])
                s = ' '.join([rev_label_map[ss]for ss in s])
                f.write('{}\t{}\t{}\n'.format(id, s, p))
T
tianxin04 已提交
349 350

if __name__ == '__main__':
C
chenxuyi 已提交
351
    prepare_logger(log)
T
tianxin04 已提交
352
    print_arguments(args)
T
tianxin 已提交
353
    check_cuda(args.use_cuda)
T
tianxin04 已提交
354
    main(args)