decode.py 16.0 KB
Newer Older
M
Meiyim 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import division
from __future__ import absolute_import
from __future__ import print_function
from __future__ import unicode_literals

import sys
C
chenxuyi 已提交
21
import io
M
Meiyim 已提交
22
import re
M
Meiyim 已提交
23 24 25 26
import argparse
import logging
import json
import numpy as np
C
chenxuyi 已提交
27
from pathlib import Path
M
Meiyim 已提交
28 29
from collections import namedtuple

C
chenxuyi 已提交
30 31
import paddle as P
from paddle.nn import functional as F
M
Meiyim 已提交
32

M
Meiyim 已提交
33
from ernie.modeling_ernie import ErnieModel, ErnieModelForPretraining, ErnieModelForGeneration
M
Meiyim 已提交
34 35 36 37 38 39 40 41 42 43 44 45 46 47
from ernie.modeling_ernie import _build_linear, _build_ln, append_name
from ernie.tokenizing_ernie import ErnieTokenizer

from propeller import log
import propeller.paddle as propeller


@np.vectorize
def rev_lookup(i):
    return rev_dict[i]


def gen_bias(encoder_inputs, decoder_inputs, step):
    decoder_bsz, decoder_seqlen = decoder_inputs.shape[:2]
C
chenxuyi 已提交
48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66
    attn_bias = P.reshape(
        P.arange(
            0, decoder_seqlen, 1, dtype='float32') + 1, [1, -1, 1])
    decoder_bias = P.cast(
        (P.matmul(
            attn_bias, 1. / attn_bias, transpose_y=True) >= 1.),
        'float32')  #[1, 1, decoderlen, decoderlen]
    encoder_bias = P.unsqueeze(
        P.cast(P.ones_like(encoder_inputs), 'float32'),
        [1])  #[bsz, 1, encoderlen]
    encoder_bias = P.tile(
        encoder_bias, [1, decoder_seqlen, 1])  #[bsz,decoderlen, encoderlen]
    decoder_bias = P.tile(decoder_bias,
                          [decoder_bsz, 1, 1])  #[bsz, decoderlen, decoderlen]
    if step > 0:
        bias = P.concat([
            encoder_bias, P.ones([decoder_bsz, decoder_seqlen, step],
                                 'float32'), decoder_bias
        ], -1)
M
Meiyim 已提交
67
    else:
C
chenxuyi 已提交
68
        bias = P.concat([encoder_bias, decoder_bias], -1)
M
Meiyim 已提交
69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90
    return bias


#def make_data(tokenizer, inputs, max_encode_len):
#    all_ids, all_sids = [], []
#    for i in inputs:
#        q_ids, q_sids = tokenizer.build_for_ernie(
#                np.array(
#                    tokenizer.convert_tokens_to_ids(i.split(' '))[: max_encode_len-2],
#                    dtype=np.int64
#                    )
#                )
#        all_ids.append(q_ids)
#        all_sids.append(q_sids)
#    ml = max(map(len, all_ids))
#    all_ids = [np.pad(i, [0, ml-len(i)], mode='constant')for i in all_ids]
#    all_sids = [np.pad(i, [0, ml-len(i)], mode='constant')for i in all_sids]
#    all_ids = np.stack(all_ids, 0)
#    all_sids = np.stack(all_sids, 0)
#    return all_ids, all_sids


C
chenxuyi 已提交
91 92 93 94 95 96 97 98 99
def greedy_search_infilling(model,
                            q_ids,
                            q_sids,
                            sos_id,
                            eos_id,
                            attn_id,
                            max_encode_len=640,
                            max_decode_len=100,
                            tgt_type_id=3):
M
Meiyim 已提交
100
    model.eval()
C
chenxuyi 已提交
101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157
    with P.no_grad():
        #log.debug(q_ids.numpy().tolist())
        _, logits, info = model(q_ids, q_sids)
        gen_ids = P.argmax(logits, -1)
        d_batch, d_seqlen = q_ids.shape
        seqlen = P.cast(q_ids != 0, 'int64').sum(1, keepdim=True)
        log.debug(seqlen.numpy())
        log.debug(d_seqlen)
        has_stopped = np.zeros([d_batch], dtype=np.bool)
        gen_seq_len = np.zeros([d_batch], dtype=np.int64)
        output_ids = []

        past_cache = info['caches']

        cls_ids = P.ones([d_batch], dtype='int64') * sos_id
        attn_ids = P.ones([d_batch], dtype='int64') * attn_id
        ids = P.stack([cls_ids, attn_ids], -1)
        for step in range(max_decode_len):
            log.debug('decode step %d' % step)
            bias = gen_bias(q_ids, ids, step)
            pos_ids = P.to_tensor(
                np.tile(
                    np.array(
                        [[step, step + 1]], dtype=np.int64), [d_batch, 1]))
            pos_ids += seqlen
            _, logits, info = model(
                ids,
                P.ones_like(ids) * tgt_type_id,
                pos_ids=pos_ids,
                attn_bias=bias,
                past_cache=past_cache)
            gen_ids = P.argmax(logits, -1)

            past_cached_k, past_cached_v = past_cache
            cached_k, cached_v = info['caches']
            cached_k = [
                P.concat([pk, k[:, :1, :]], 1)
                for pk, k in zip(past_cached_k, cached_k)
            ]  # concat cached
            cached_v = [
                P.concat([pv, v[:, :1, :]], 1)
                for pv, v in zip(past_cached_v, cached_v)
            ]
            past_cache = (cached_k, cached_v)

            gen_ids = gen_ids[:, 1]
            ids = P.stack([gen_ids, attn_ids], 1)

            gen_ids = gen_ids.numpy()
            has_stopped |= (gen_ids == eos_id).astype(np.bool)
            gen_seq_len += (1 - has_stopped.astype(np.int64))
            output_ids.append(gen_ids.tolist())
            if has_stopped.all():
                #log.debug('exit because all done')
                break
            #if step == 1: break
        output_ids = np.array(output_ids).transpose([1, 0])
M
Meiyim 已提交
158 159 160
    return output_ids


C
chenxuyi 已提交
161 162 163 164
BeamSearchState = namedtuple('BeamSearchState',
                             ['log_probs', 'lengths', 'finished'])
BeamSearchOutput = namedtuple('BeamSearchOutput',
                              ['scores', 'predicted_ids', 'beam_parent_ids'])
M
Meiyim 已提交
165 166 167 168 169 170 171 172


def log_softmax(x):
    e_x = np.exp(x - np.max(x))
    return np.log(e_x / e_x.sum())


def mask_prob(p, onehot_eos, finished):
C
chenxuyi 已提交
173 174 175
    is_finished = P.cast(P.reshape(finished, [-1, 1]) != 0, 'float32')
    p = is_finished * (1. - P.cast(onehot_eos, 'float32')) * -9999. + (
        1. - is_finished) * p
M
Meiyim 已提交
176 177 178
    return p


M
Meiyim 已提交
179
def hyp_score(log_probs, length, length_penalty):
C
chenxuyi 已提交
180
    lp = P.pow((5. + P.cast(length, 'float32')) / 6., length_penalty)
M
Meiyim 已提交
181 182 183
    return log_probs / lp


C
chenxuyi 已提交
184 185
def beam_search_step(state, logits, eos_id, beam_width, is_first_step,
                     length_penalty):
M
Meiyim 已提交
186 187 188 189
    """logits.shape == [B*W, V]"""
    _, vocab_size = logits.shape

    bsz, beam_width = state.log_probs.shape
C
chenxuyi 已提交
190 191
    onehot_eos = P.cast(
        F.one_hot(P.ones([1], 'int64') * eos_id, vocab_size), 'int64')  #[1, V]
M
Meiyim 已提交
192

C
chenxuyi 已提交
193 194 195
    probs = P.log(F.softmax(logits))  #[B*W, V]
    probs = mask_prob(probs, onehot_eos, state.finished)  #[B*W, V]
    allprobs = P.reshape(state.log_probs, [-1, 1]) + probs  #[B*W, V]
M
Meiyim 已提交
196

C
chenxuyi 已提交
197
    not_finished = 1 - P.reshape(state.finished, [-1, 1])  #[B*W,1]
M
Meiyim 已提交
198
    not_eos = 1 - onehot_eos
C
chenxuyi 已提交
199 200
    length_to_add = not_finished * not_eos  #[B*W,V]
    alllen = P.reshape(state.lengths, [-1, 1]) + length_to_add
M
Meiyim 已提交
201

C
chenxuyi 已提交
202 203
    allprobs = P.reshape(allprobs, [-1, beam_width * vocab_size])
    alllen = P.reshape(alllen, [-1, beam_width * vocab_size])
M
Meiyim 已提交
204
    allscore = hyp_score(allprobs, alllen, length_penalty)
M
Meiyim 已提交
205
    if is_first_step:
C
chenxuyi 已提交
206 207 208 209 210
        allscore = P.reshape(
            allscore,
            [bsz, beam_width, -1])[:, 0, :]  # first step only consiter beam 0
    scores, idx = P.topk(allscore, k=beam_width)  #[B, W]
    next_beam_id = idx // vocab_size  #[B, W]
M
Meiyim 已提交
211 212
    next_word_id = idx % vocab_size

C
chenxuyi 已提交
213 214 215 216 217 218 219 220 221 222 223
    gather_idx = P.concat(
        [P.nonzero(idx != -1)[:, :1], P.reshape(idx, [-1, 1])], 1)
    next_probs = P.reshape(P.gather_nd(allprobs, gather_idx), idx.shape)
    next_len = P.reshape(P.gather_nd(alllen, gather_idx), idx.shape)

    gather_idx = P.concat([
        P.nonzero(next_beam_id != -1)[:, :1], P.reshape(next_beam_id, [-1, 1])
    ], 1)
    next_finished = P.reshape(
        P.gather_nd(state.finished, gather_idx), state.finished.
        shape)  #[gather new beam state according to new beam id]
M
Meiyim 已提交
224 225 226 227
    #log.debug(gather_idx.numpy())
    #log.debug(state.finished.numpy())
    #log.debug(next_finished.numpy())

C
chenxuyi 已提交
228 229
    next_finished += P.cast(next_word_id == eos_id, 'int64')
    next_finished = P.cast(next_finished > 0, 'int64')
M
Meiyim 已提交
230 231 232

    #log.debug(next_word_id.numpy())
    #log.debug(next_beam_id.numpy())
C
chenxuyi 已提交
233 234 235 236 237 238
    next_state = BeamSearchState(
        log_probs=next_probs, lengths=next_len, finished=next_finished)
    output = BeamSearchOutput(
        scores=scores,
        predicted_ids=next_word_id,
        beam_parent_ids=next_beam_id)
M
Meiyim 已提交
239 240 241 242

    return output, next_state


C
chenxuyi 已提交
243 244 245 246 247 248 249 250 251 252 253
def beam_search_infilling(model,
                          q_ids,
                          q_sids,
                          sos_id,
                          eos_id,
                          attn_id,
                          max_encode_len=640,
                          max_decode_len=100,
                          beam_width=5,
                          tgt_type_id=3,
                          length_penalty=1.0):
M
Meiyim 已提交
254
    model.eval()
C
chenxuyi 已提交
255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282
    with P.no_grad():
        #log.debug(q_ids.numpy().tolist())
        _, __, info = model(q_ids, q_sids)
        d_batch, d_seqlen = q_ids.shape

        state = BeamSearchState(
            log_probs=P.zeros([d_batch, beam_width], 'float32'),
            lengths=P.zeros([d_batch, beam_width], 'int64'),
            finished=P.zeros([d_batch, beam_width], 'int64'))
        outputs = []

        def reorder_(t, parent_id):
            """reorder cache according to parent beam id"""
            gather_idx = P.nonzero(
                parent_id != -1)[:, 0] * beam_width + P.reshape(parent_id,
                                                                [-1])
            t = P.gather(t, gather_idx)
            return t

        def tile_(t, times):
            _shapes = list(t.shape[1:])
            ret = P.reshape(
                P.tile(
                    P.unsqueeze(t, [1]), [
                        1,
                        times,
                    ] + [1, ] * len(_shapes)), [-1, ] + _shapes)
            return ret
M
Meiyim 已提交
283

M
Meiyim 已提交
284
        cached_k, cached_v = info['caches']
C
chenxuyi 已提交
285 286
        cached_k = [tile_(k, beam_width) for k in cached_k]
        cached_v = [tile_(v, beam_width) for v in cached_v]
M
Meiyim 已提交
287
        past_cache = (cached_k, cached_v)
M
Meiyim 已提交
288

C
chenxuyi 已提交
289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351
        q_ids = tile_(q_ids, beam_width)
        seqlen = P.cast(q_ids != 0, 'int64').sum(1, keepdim=True)
        #log.debug(q_ids.shape)

        cls_ids = P.ones([d_batch * beam_width], dtype='int64') * sos_id
        attn_ids = P.ones(
            [d_batch * beam_width], dtype='int64') * attn_id  # SOS
        ids = P.stack([cls_ids, attn_ids], -1)
        for step in range(max_decode_len):
            #log.debug('decode step %d' % step)
            bias = gen_bias(q_ids, ids, step)
            pos_ids = P.to_tensor(
                np.tile(
                    np.array(
                        [[step, step + 1]], dtype=np.int64),
                    [d_batch * beam_width, 1]))
            pos_ids += seqlen
            _, logits, info = model(
                ids,
                P.ones_like(ids) * tgt_type_id,
                pos_ids=pos_ids,
                attn_bias=bias,
                past_cache=past_cache)

            output, state = beam_search_step(
                state,
                logits[:, 1],
                eos_id=eos_id,
                beam_width=beam_width,
                is_first_step=(step == 0),
                length_penalty=length_penalty)
            outputs.append(output)

            past_cached_k, past_cached_v = past_cache
            cached_k, cached_v = info['caches']
            cached_k = [
                reorder_(
                    P.concat([pk, k[:, :1, :]], 1), output.beam_parent_ids)
                for pk, k in zip(past_cached_k, cached_k)
            ]  # concat cached
            cached_v = [
                reorder_(
                    P.concat([pv, v[:, :1, :]], 1), output.beam_parent_ids)
                for pv, v in zip(past_cached_v, cached_v)
            ]
            past_cache = (cached_k, cached_v)

            pred_ids_flatten = P.reshape(output.predicted_ids,
                                         [d_batch * beam_width])
            ids = P.stack([pred_ids_flatten, attn_ids], 1)

            if state.finished.numpy().all():
                #log.debug('exit because all done')
                break
            #if step == 1: break

        final_ids = P.stack([o.predicted_ids for o in outputs], 0)
        final_parent_ids = P.stack([o.beam_parent_ids for o in outputs], 0)
        final_ids = P.fluid.layers.gather_tree(
            final_ids, final_parent_ids)[:, :, 0]  #pick best beam
        final_ids = P.transpose(
            P.reshape(final_ids, [-1, d_batch * 1]), [1, 0])
    return final_ids
M
Meiyim 已提交
352

M
Meiyim 已提交
353

M
Meiyim 已提交
354
en_patten = re.compile(r'^[a-zA-Z0-9]*$')
M
Meiyim 已提交
355

C
chenxuyi 已提交
356

M
Meiyim 已提交
357 358 359 360
def post_process(token):
    if token.startswith('##'):
        ret = token[2:]
    else:
M
Meiyim 已提交
361 362 363 364
        if en_patten.match(token):
            ret = ' ' + token
        else:
            ret = token
M
Meiyim 已提交
365
    return ret
M
Meiyim 已提交
366

M
Meiyim 已提交
367 368

if __name__ == '__main__':
C
chenxuyi 已提交
369 370 371
    sys.stdout = io.TextIOWrapper(sys.stdout.buffer, encoding='utf-8')
    sys.stderr = io.TextIOWrapper(sys.stderr.buffer, encoding='utf-8')

M
Meiyim 已提交
372
    parser = argparse.ArgumentParser('seq2seq model with ERNIE')
C
chenxuyi 已提交
373 374 375 376 377
    parser.add_argument(
        '--from_pretrained',
        type=Path,
        required=True,
        help='pretrained model directory or tag')
M
Meiyim 已提交
378 379 380 381
    parser.add_argument('--bsz', type=int, default=8, help='batchsize')
    parser.add_argument('--max_encode_len', type=int, default=640)
    parser.add_argument('--max_decode_len', type=int, default=120)
    parser.add_argument('--tgt_type_id', type=int, default=3)
M
Meiyim 已提交
382
    parser.add_argument('--beam_width', type=int, default=5)
C
chenxuyi 已提交
383 384 385 386 387
    parser.add_argument(
        '--attn_token',
        type=str,
        default='[ATTN]',
        help='if [ATTN] not in vocab, you can specified [MAKK] as attn-token')
M
Meiyim 已提交
388
    parser.add_argument('--length_penalty', type=float, default=1.0)
C
chenxuyi 已提交
389 390
    parser.add_argument(
        '--save_dir', type=str, required=True, help='model dir to be loaded')
M
Meiyim 已提交
391 392 393

    args = parser.parse_args()

C
chenxuyi 已提交
394
    env = P.distributed.ParallelEnv()
M
Meiyim 已提交
395

C
chenxuyi 已提交
396 397 398 399
    ernie = ErnieModelForGeneration.from_pretrained(
        args.from_pretrained, name='')
    tokenizer = ErnieTokenizer.from_pretrained(
        args.from_pretrained, mask_token=None)
M
Meiyim 已提交
400
    rev_dict = {v: k for k, v in tokenizer.vocab.items()}
C
chenxuyi 已提交
401 402
    rev_dict[tokenizer.pad_id] = ''  # replace [PAD]
    rev_dict[tokenizer.unk_id] = ''  # replace [PAD]
M
Meiyim 已提交
403

M
Meiyim 已提交
404
    sd = P.load(str(args.save_dir))
C
chenxuyi 已提交
405
    ernie.set_state_dict(sd)
M
Meiyim 已提交
406

M
Meiyim 已提交
407
    def map_fn(src_ids):
C
chenxuyi 已提交
408
        src_ids = src_ids[:args.max_encode_len]
M
Meiyim 已提交
409 410 411 412
        src_ids, src_sids = tokenizer.build_for_ernie(src_ids)
        return (src_ids, src_sids)

    feature_column = propeller.data.FeatureColumns([
C
chenxuyi 已提交
413 414 415 416 417
        propeller.data.TextColumn(
            'seg_a',
            unk_id=tokenizer.unk_id,
            vocab_dict=tokenizer.vocab,
            tokenizer=tokenizer.tokenize),
M
Meiyim 已提交
418
    ])
C
chenxuyi 已提交
419 420
    dataset = feature_column.build_dataset_from_stdin('predict').map(
        map_fn).padded_batch(args.bsz)
M
Meiyim 已提交
421 422

    for step, (encoder_ids, encoder_sids) in enumerate(dataset):
C
chenxuyi 已提交
423
        #result_ids = greedy_search_infilling(ernie, P.to_tensor(encoder_ids), P.to_tensor(encoder_sids),
M
Meiyim 已提交
424 425
        #       eos_id=tokenizer.sep_id,
        #       sos_id=tokenizer.cls_id,
M
Meiyim 已提交
426
        #       attn_id=tokenizer.vocab[args.attn_id],
C
chenxuyi 已提交
427 428
        #    max_decode_len=args.max_decode_len,
        #    max_encode_len=args.max_encode_len,
M
Meiyim 已提交
429 430
        #    beam_width=args.beam_width,
        #    tgt_type_id=args.tgt_type_id)
C
chenxuyi 已提交
431 432 433 434 435 436 437 438 439 440 441 442
        result_ids = beam_search_infilling(
            ernie,
            P.to_tensor(encoder_ids),
            P.to_tensor(encoder_sids),
            eos_id=tokenizer.sep_id,
            sos_id=tokenizer.cls_id,
            attn_id=tokenizer.vocab[args.attn_token],
            max_decode_len=args.max_decode_len,
            max_encode_len=args.max_encode_len,
            beam_width=args.beam_width,
            length_penalty=args.length_penalty,
            tgt_type_id=args.tgt_type_id)
M
Meiyim 已提交
443 444 445 446

        output_str = rev_lookup(result_ids.numpy())
        for ostr in output_str.tolist():
            if '[SEP]' in ostr:
C
chenxuyi 已提交
447 448
                ostr = ostr[:ostr.index('[SEP]')]

M
Meiyim 已提交
449
            ostr = ''.join(map(post_process, ostr))
M
Meiyim 已提交
450
            ostr = ostr.strip()
M
Meiyim 已提交
451
            print(ostr)