finetune_classifier_dygraph.py 7.3 KB
Newer Older
M
Meiyim 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
import re
import time
import logging
import json
from random import random
from tqdm import tqdm
from functools import reduce, partial

import numpy as np
import logging
import argparse

import paddle
import paddle.fluid as F
import paddle.fluid.dygraph as FD
import paddle.fluid.layers as L

from propeller import log
import propeller.paddle as propeller

log.setLevel(logging.DEBUG)
logging.getLogger().setLevel(logging.DEBUG)


#from model.bert import BertConfig, BertModelLayer
from ernie.modeling_ernie import ErnieModel, ErnieModelForSequenceClassification
from ernie.tokenizing_ernie import ErnieTokenizer, ErnieTinyTokenizer
from ernie.optimization import AdamW, LinearDecay


if __name__ == '__main__':
    parser = argparse.ArgumentParser('classify model with ERNIE')
    parser.add_argument('--from_pretrained', type=str, required=True, help='pretrained model directory or tag')
    parser.add_argument('--max_seqlen', type=int, default=128, help='max sentence length, should not greater than 512')
    parser.add_argument('--bsz', type=int, default=32, help='batchsize')
    parser.add_argument('--epoch', type=int, default=3, help='epoch')
    parser.add_argument('--data_dir', type=str, required=True, help='data directory includes train / develop data')
M
Meiyim 已提交
53 54 55
    parser.add_argument('--use_lr_decay', action='store_true', help='if set, learning rate will decay to zero at `max_steps`')
    parser.add_argument('--warmup_proportion', type=float, default=0.1, help='if use_lr_decay is set, '
            'learning rate will raise to `lr` at `warmup_proportion` * `max_steps` and decay to 0. at `max_steps`')
M
Meiyim 已提交
56 57 58
    parser.add_argument('--lr', type=float, default=5e-5, help='learning rate')
    parser.add_argument('--inference_model_dir', type=str, default=None, help='inference model output directory')
    parser.add_argument('--save_dir', type=str, default=None, help='model output directory')
M
Meiyim 已提交
59
    parser.add_argument('--max_steps', type=int, default=None, help='max_train_steps, set this to EPOCH * NUM_SAMPLES / BATCH_SIZE')
M
Meiyim 已提交
60
    parser.add_argument('--wd', type=float, default=0.01, help='weight decay, aka L2 regularizer')
M
Meiyim 已提交
61
    parser.add_argument('--init_checkpoint', type=str, default=None, help='checkpoint to warm start from')
M
Meiyim 已提交
62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106


    args = parser.parse_args()

    tokenizer = ErnieTokenizer.from_pretrained(args.from_pretrained)
    #tokenizer = ErnieTinyTokenizer.from_pretrained(args.from_pretrained)

    feature_column = propeller.data.FeatureColumns([
        propeller.data.TextColumn('seg_a', unk_id=tokenizer.unk_id, vocab_dict=tokenizer.vocab, tokenizer=tokenizer.tokenize),
        propeller.data.TextColumn('seg_b', unk_id=tokenizer.unk_id, vocab_dict=tokenizer.vocab, tokenizer=tokenizer.tokenize),
        propeller.data.LabelColumn('label', vocab_dict={
            b"contradictory": 0,
            b"contradiction": 0,
            b"entailment": 1,
            b"neutral": 2,
        }),
    ])

    def map_fn(seg_a, seg_b, label):
        seg_a, seg_b = tokenizer.truncate(seg_a, seg_b, seqlen=args.max_seqlen)
        sentence, segments = tokenizer.build_for_ernie(seg_a, seg_b)
        return sentence, segments, label


    train_ds = feature_column.build_dataset('train', data_dir=os.path.join(args.data_dir, 'train'), shuffle=True, repeat=False, use_gz=False) \
                                   .map(map_fn) \
                                   .padded_batch(args.bsz, (0, 0, 0))

    dev_ds = feature_column.build_dataset('dev', data_dir=os.path.join(args.data_dir, 'dev'), shuffle=False, repeat=False, use_gz=False) \
                                   .map(map_fn) \
                                   .padded_batch(args.bsz, (0, 0, 0))


    shapes = ([-1, args.max_seqlen], [-1, args.max_seqlen], [-1])
    types = ('int64', 'int64', 'int64')

    train_ds.data_shapes = shapes
    train_ds.data_types = types
    dev_ds.data_shapes = shapes
    dev_ds.data_types = types

    place = F.CUDAPlace(0)
    with FD.guard(place):
        model = ErnieModelForSequenceClassification.from_pretrained(args.from_pretrained, num_labels=3, name='')

M
Meiyim 已提交
107 108 109 110 111
        if args.init_checkpoint is not None:
            log.info('loading checkpoint from %s' % args.init_checkpoint)
            sd, _ = FD.load_dygraph(args.init_checkpoint)
            model.set_dict(sd)

M
Meiyim 已提交
112
        g_clip = F.clip.GradientClipByGlobalNorm(1.0) #experimental
M
Meiyim 已提交
113
        if args.use_lr_decay:
M
Meiyim 已提交
114
            opt = AdamW(learning_rate=LinearDecay(args.lr, int(args.warmup_proportion * args.max_steps), args.max_steps), parameter_list=model.parameters(), weight_decay=args.wd, grad_clip=g_clip)
M
Meiyim 已提交
115
        else:
M
Meiyim 已提交
116
            opt = AdamW(args.lr, parameter_list=model.parameters(), weight_decay=args.wd, grad_clip=g_clip)
M
Meiyim 已提交
117

M
Meiyim 已提交
118 119 120 121 122 123 124
        for epoch in range(args.epoch):
            for step, d in enumerate(tqdm(train_ds.start(place), desc='training')):
                ids, sids, label = d
                loss, _ = model(ids, sids, labels=label)
                loss.backward()
                if step % 10 == 0:
                    log.debug('train loss %.5f lr %.3e' % (loss.numpy(), opt.current_step_lr()))
M
Meiyim 已提交
125
                opt.minimize(loss)
M
Meiyim 已提交
126 127 128 129 130
                model.clear_gradients()
                if step % 100 == 0:
                    acc = []
                    with FD.base._switch_tracer_mode_guard_(is_train=False):
                        model.eval()
M
Meiyim 已提交
131
                        for step, d in enumerate(tqdm(dev_ds.start(place), desc='evaluating %d' % epoch)):
M
Meiyim 已提交
132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157
                            ids, sids, label = d
                            loss, logits = model(ids, sids, labels=label)
                            #print('\n'.join(map(str, logits.numpy().tolist())))
                            a = L.argmax(logits, -1) == label
                            acc.append(a.numpy())
                        model.train()
                    log.debug('acc %.5f' % np.concatenate(acc).mean())
        if args.save_dir is not None:
            F.save_dygraph(model.state_dict(), args.save_dir)
        if args.inference_model_dir is not None:
            log.debug('saving inference model')
            class InferemceModel(ErnieModelForSequenceClassification):
                def forward(self, *args, **kwargs):
                    _, logits = super(InferemceModel, self).forward(*args, **kwargs)
                    return logits
            model.__class__ = InferemceModel #dynamic change model type, to make sure forward output doesn't contain `None`
            src_placeholder = FD.to_variable(np.ones([1, 1], dtype=np.int64))
            sent_placehodler = FD.to_variable(np.zeros([1, 1], dtype=np.int64))
            model(src_placeholder, sent_placehodler)
            _, static_model = FD.TracedLayer.trace(model, inputs=[src_placeholder, sent_placehodler])
            static_model.save_inference_model(args.inference_model_dir)
            log.debug('done')