lm_model.py 9.7 KB
Newer Older
X
xuezhong 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265
#   Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import paddle.fluid.layers as layers
import paddle.fluid as fluid
import numpy as np


def dropout(input, test_mode, args):
    if args.dropout and (not test_mode):
        return layers.dropout(
            input,
            dropout_prob=args.dropout,
            dropout_implementation="upscale_in_train",
            seed=args.random_seed,
            is_test=False)
    else:
        return input


def lstmp_encoder(input_seq, gate_size, h_0, c_0, para_name, proj_size,
                  test_mode, args):
    # A lstm encoder implementation with projection.
    # Linear transformation part for input gate, output gate, forget gate
    # and cell activation vectors need be done outside of dynamic_lstm.
    # So the output size is 4 times of gate_size.

    input_seq = dropout(input_seq, test_mode, args)
    input_proj = layers.fc(input=input_seq,
                           param_attr=fluid.ParamAttr(
                               name=para_name + '_gate_w', initializer=None),
                           size=gate_size * 4,
                           act=None,
                           bias_attr=False)
    hidden, cell = layers.dynamic_lstmp(
        input=input_proj,
        size=gate_size * 4,
        proj_size=proj_size,
        h_0=h_0,
        c_0=c_0,
        use_peepholes=False,
        proj_clip=args.proj_clip,
        cell_clip=args.cell_clip,
        proj_activation="identity",
        param_attr=fluid.ParamAttr(initializer=None),
        bias_attr=fluid.ParamAttr(initializer=None))

    return hidden, cell, input_proj


def encoder(x,
            y,
            vocab_size,
            emb_size,
            init_hidden=None,
            init_cell=None,
            para_name='',
            custom_samples=None,
            custom_probabilities=None,
            test_mode=False,
            args=None):
    x_emb = layers.embedding(
        input=x,
        size=[vocab_size, emb_size],
        dtype='float32',
        is_sparse=False,
        param_attr=fluid.ParamAttr(name='embedding_para'))
    rnn_input = x_emb
    rnn_outs = []
    rnn_outs_ori = []
    cells = []
    projs = []
    for i in range(args.num_layers):
        rnn_input = dropout(rnn_input, test_mode, args)
        if init_hidden and init_cell:
            h0 = layers.squeeze(
                layers.slice(
                    init_hidden, axes=[0], starts=[i], ends=[i + 1]),
                axes=[0])
            c0 = layers.squeeze(
                layers.slice(
                    init_cell, axes=[0], starts=[i], ends=[i + 1]),
                axes=[0])
        else:
            h0 = c0 = None
        rnn_out, cell, input_proj = lstmp_encoder(
            rnn_input, args.hidden_size, h0, c0,
            para_name + 'layer{}'.format(i + 1), emb_size, test_mode, args)
        rnn_out_ori = rnn_out
        if i > 0:
            rnn_out = rnn_out + rnn_input
        rnn_out = dropout(rnn_out, test_mode, args)
        cell = dropout(cell, test_mode, args)
        rnn_outs.append(rnn_out)
        rnn_outs_ori.append(rnn_out_ori)
        rnn_input = rnn_out
        cells.append(cell)
        projs.append(input_proj)

    softmax_weight = layers.create_parameter(
        [vocab_size, emb_size], dtype="float32", name="softmax_weight")
    softmax_bias = layers.create_parameter(
        [vocab_size], dtype="float32", name='softmax_bias')
    projection = layers.matmul(rnn_outs[-1], softmax_weight, transpose_y=True)
    projection = layers.elementwise_add(projection, softmax_bias)

    projection = layers.reshape(projection, shape=[-1, vocab_size])

    if args.sample_softmax and (not test_mode):
        loss = layers.sampled_softmax_with_cross_entropy(
            logits=projection,
            label=y,
            num_samples=args.n_negative_samples_batch,
            seed=args.random_seed)
    else:
        label = layers.one_hot(input=y, depth=vocab_size)
        loss = layers.softmax_with_cross_entropy(
            logits=projection, label=label, soft_label=True)
    return [x_emb, projection, loss], rnn_outs, rnn_outs_ori, cells, projs


class LanguageModel(object):
    def __init__(self, args, vocab_size, test_mode):
        self.args = args
        self.vocab_size = vocab_size
        self.test_mode = test_mode

    def build(self):
        args = self.args
        emb_size = args.embed_size
        proj_size = args.embed_size
        hidden_size = args.hidden_size
        batch_size = args.batch_size
        num_layers = args.num_layers
        num_steps = args.num_steps

        lstm_outputs = []

        x_f = layers.data(name="x", shape=[1], dtype='int64', lod_level=1)
        y_f = layers.data(name="y", shape=[1], dtype='int64', lod_level=1)

        x_b = layers.data(name="x_r", shape=[1], dtype='int64', lod_level=1)
        y_b = layers.data(name="y_r", shape=[1], dtype='int64', lod_level=1)

        init_hiddens_ = layers.data(
            name="init_hiddens", shape=[1], dtype='float32')
        init_cells_ = layers.data(name="init_cells", shape=[1], dtype='float32')

        init_hiddens = layers.reshape(
            init_hiddens_, shape=[2 * num_layers, -1, proj_size])
        init_cells = layers.reshape(
            init_cells_, shape=[2 * num_layers, -1, hidden_size])

        init_hidden = layers.slice(
            init_hiddens, axes=[0], starts=[0], ends=[num_layers])
        init_cell = layers.slice(
            init_cells, axes=[0], starts=[0], ends=[num_layers])
        init_hidden_r = layers.slice(
            init_hiddens, axes=[0], starts=[num_layers], ends=[2 * num_layers])
        init_cell_r = layers.slice(
            init_cells, axes=[0], starts=[num_layers], ends=[2 * num_layers])

        if args.use_custom_samples:
            custom_samples = layers.data(
                name="custom_samples",
                shape=[args.n_negative_samples_batch + 1],
                dtype='int64',
                lod_level=1)
            custom_samples_r = layers.data(
                name="custom_samples_r",
                shape=[args.n_negative_samples_batch + 1],
                dtype='int64',
                lod_level=1)
            custom_probabilities = layers.data(
                name="custom_probabilities",
                shape=[args.n_negative_samples_batch + 1],
                dtype='float32',
                lod_level=1)
        else:
            custom_samples = None
            custom_samples_r = None
            custom_probabilities = None

        forward, fw_hiddens, fw_hiddens_ori, fw_cells, fw_projs = encoder(
            x_f,
            y_f,
            self.vocab_size,
            emb_size,
            init_hidden,
            init_cell,
            para_name='fw_',
            custom_samples=custom_samples,
            custom_probabilities=custom_probabilities,
            test_mode=self.test_mode,
            args=args)
        backward, bw_hiddens, bw_hiddens_ori, bw_cells, bw_projs = encoder(
            x_b,
            y_b,
            self.vocab_size,
            emb_size,
            init_hidden_r,
            init_cell_r,
            para_name='bw_',
            custom_samples=custom_samples_r,
            custom_probabilities=custom_probabilities,
            test_mode=self.test_mode,
            args=args)

        losses = layers.concat([forward[-1], backward[-1]])
        self.loss = layers.reduce_mean(losses)
        self.loss.persistable = True
        self.grad_vars = [x_f, y_f, x_b, y_b, self.loss]
        self.grad_vars_name = ['x', 'y', 'x_r', 'y_r', 'final_loss']
        fw_vars_name = ['x_emb', 'proj', 'loss'] + [
            'init_hidden', 'init_cell'
        ] + ['rnn_out', 'rnn_out2', 'cell', 'cell2', 'xproj', 'xproj2']
        bw_vars_name = ['x_emb_r', 'proj_r', 'loss_r'] + [
            'init_hidden_r', 'init_cell_r'
        ] + [
            'rnn_out_r', 'rnn_out2_r', 'cell_r', 'cell2_r', 'xproj_r',
            'xproj2_r'
        ]
        fw_vars = forward + [init_hidden, init_cell
                             ] + fw_hiddens + fw_cells + fw_projs
        bw_vars = backward + [init_hidden_r, init_cell_r
                              ] + bw_hiddens + bw_cells + bw_projs
        for i in range(len(fw_vars_name)):
            self.grad_vars.append(fw_vars[i])
            self.grad_vars.append(bw_vars[i])
            self.grad_vars_name.append(fw_vars_name[i])
            self.grad_vars_name.append(bw_vars_name[i])
        if args.use_custom_samples:
            self.feed_order = [
                'x', 'y', 'x_r', 'y_r', 'custom_samples', 'custom_samples_r',
                'custom_probabilities'
            ]
        else:
            self.feed_order = ['x', 'y', 'x_r', 'y_r']
        self.last_hidden = [
            fluid.layers.sequence_last_step(input=x)
            for x in fw_hiddens_ori + bw_hiddens_ori
        ]
        self.last_cell = [
            fluid.layers.sequence_last_step(input=x)
            for x in fw_cells + bw_cells
        ]
        self.last_hidden = layers.concat(self.last_hidden, axis=0)
        self.last_hidden.persistable = True
        self.last_cell = layers.concat(self.last_cell, axis=0)
        self.last_cell.persistable = True