network.py 4.1 KB
Newer Older
X
xuezhong 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118
"""
The function lex_net(args) define the lexical analysis network structure
"""
import sys
import os
import math

import paddle.fluid as fluid
from paddle.fluid.initializer import NormalInitializer
import paddle.fluid.layers as layers
from bilm import elmo_encoder
import ipdb


def lex_net(args, word_dict_len, label_dict_len):
    """
    define the lexical analysis network structure
    """
    word_emb_dim = args.word_emb_dim
    grnn_hidden_dim = args.grnn_hidden_dim
    emb_lr = args.emb_learning_rate
    crf_lr = args.crf_learning_rate
    bigru_num = args.bigru_num
    init_bound = 0.1
    IS_SPARSE = True

    def _bigru_layer(input_feature):
        """
        define the bidirectional gru layer
        """
        pre_gru = fluid.layers.fc(
            input=input_feature,
            size=grnn_hidden_dim * 3,
            param_attr=fluid.ParamAttr(
                initializer=fluid.initializer.Uniform(
                    low=-init_bound, high=init_bound),
                regularizer=fluid.regularizer.L2DecayRegularizer(
                    regularization_coeff=1e-4)))
        gru = fluid.layers.dynamic_gru(
            input=pre_gru,
            size=grnn_hidden_dim,
            param_attr=fluid.ParamAttr(
                initializer=fluid.initializer.Uniform(
                    low=-init_bound, high=init_bound),
                regularizer=fluid.regularizer.L2DecayRegularizer(
                    regularization_coeff=1e-4)))

        pre_gru_r = fluid.layers.fc(
            input=input_feature,
            size=grnn_hidden_dim * 3,
            param_attr=fluid.ParamAttr(
                initializer=fluid.initializer.Uniform(
                    low=-init_bound, high=init_bound),
                regularizer=fluid.regularizer.L2DecayRegularizer(
                    regularization_coeff=1e-4)))
        gru_r = fluid.layers.dynamic_gru(
            input=pre_gru_r,
            size=grnn_hidden_dim,
            is_reverse=True,
            param_attr=fluid.ParamAttr(
                initializer=fluid.initializer.Uniform(
                    low=-init_bound, high=init_bound),
                regularizer=fluid.regularizer.L2DecayRegularizer(
                    regularization_coeff=1e-4)))

        bi_merge = fluid.layers.concat(input=[gru, gru_r], axis=1)
        return bi_merge

    def _net_conf(word_ids, target):
        """
        Configure the network
        """
        word_embedding = fluid.layers.embedding(
            input=word,
            size=[word_dict_len, word_emb_dim],
            dtype='float32',
            is_sparse=IS_SPARSE,
            param_attr=fluid.ParamAttr(
                learning_rate=emb_lr,
                name="word_emb",
                initializer=fluid.initializer.Uniform(
                    low=-init_bound, high=init_bound)))

        # add elmo embedding
        elmo_emb = elmo_encoder(word_ids, args.elmo_l2_coef)
        input_feature = layers.concat(input=[elmo_emb, word_embedding], axis=1)

        for i in range(bigru_num):
            bigru_output = _bigru_layer(input_feature)
            input_feature = bigru_output

        emission = fluid.layers.fc(
            size=label_dict_len,
            input=bigru_output,
            param_attr=fluid.ParamAttr(
                initializer=fluid.initializer.Uniform(
                    low=-init_bound, high=init_bound),
                regularizer=fluid.regularizer.L2DecayRegularizer(
                    regularization_coeff=1e-4)))

        crf_cost = fluid.layers.linear_chain_crf(
            input=emission,
            label=target,
            param_attr=fluid.ParamAttr(
                name='crfw', learning_rate=crf_lr))
        crf_decode = fluid.layers.crf_decoding(
            input=emission, param_attr=fluid.ParamAttr(name='crfw'))
        avg_cost = fluid.layers.mean(x=crf_cost)
        return avg_cost, crf_decode

    word = fluid.layers.data(name='word', shape=[1], dtype='int64', lod_level=1)

    target = fluid.layers.data(
        name="target", shape=[1], dtype='int64', lod_level=1)

    avg_cost, crf_decode = _net_conf(word, target)

    return avg_cost, crf_decode, word, target