finetune_ner_dygraph.py 8.6 KB
Newer Older
M
Meiyim 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
import re
import time
import logging
import six
import json
from random import random
from tqdm import tqdm
from collections import OrderedDict
from functools import reduce, partial

import numpy as np
import multiprocessing
import pickle
import logging

from sklearn.metrics import f1_score
import paddle
import paddle.fluid as F
import paddle.fluid.dygraph as FD
import paddle.fluid.layers as L

from propeller import log
import propeller.paddle as propeller

log.setLevel(logging.DEBUG)
logging.getLogger().setLevel(logging.DEBUG)

from ernie.modeling_ernie import ErnieModel, ErnieModelForSequenceClassification, ErnieModelForTokenClassification
from ernie.tokenizing_ernie import ErnieTokenizer
from ernie.optimization import AdamW, LinearDecay


if __name__ == '__main__':
    parser = propeller.ArgumentParser('NER model with ERNIE')
    parser.add_argument('--max_seqlen', type=int, default=256)
    parser.add_argument('--bsz', type=int, default=32)
    parser.add_argument('--data_dir', type=str, required=True)
M
Meiyim 已提交
53 54 55 56 57
    parser.add_argument('--epoch', type=int, default=6)
    parser.add_argument('--warmup_proportion', type=float, default=0.1, help='if use_lr_decay is set, '
            'learning rate will raise to `lr` at `warmup_proportion` * `max_steps` and decay to 0. at `max_steps`')
    parser.add_argument('--max_steps', type=int, required=True, 
        help='max_train_steps, set this to EPOCH * NUM_SAMPLES / BATCH_SIZE, used in learning rate scheduler')
M
Meiyim 已提交
58
    parser.add_argument('--from_pretrained', type=str, required=True)
M
Meiyim 已提交
59 60 61
    parser.add_argument('--lr', type=float, default=5e-5, help='learning rate')
    parser.add_argument('--save_dir', type=str, default=None, help='model output directory')
    parser.add_argument('--wd', type=float, default=0.01, help='weight decay, aka L2 regularizer')
M
Meiyim 已提交
62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79
    args = parser.parse_args()

    tokenizer = ErnieTokenizer.from_pretrained(args.from_pretrained)


    def tokenizer_func(inputs):
        ret = inputs.split(b'\2')
        tokens, orig_pos = [], []
        for i, r in enumerate(ret):
            t = tokenizer.tokenize(r)
            for tt in t:
                tokens.append(tt)
                orig_pos.append(i)
        assert len(tokens) == len(orig_pos)
        return tokens + orig_pos

    def tokenizer_func_for_label(inputs):
        return inputs.split(b'\2')
M
Meiyim 已提交
80 81
    
    feature_map =  {
M
Meiyim 已提交
82 83 84 85 86 87
            b"B-PER": 0,
            b"I-PER": 1,
            b"B-ORG": 2,
            b"I-ORG": 3,
            b"B-LOC": 4,
            b"I-LOC": 5,
M
Meiyim 已提交
88 89 90 91 92 93 94 95
            b"O": 6,
    }
    other_tag_id = feature_map[b'O']

    feature_column = propeller.data.FeatureColumns([
        propeller.data.TextColumn('text_a', unk_id=tokenizer.unk_id, vocab_dict=tokenizer.vocab, tokenizer=tokenizer_func),
        propeller.data.TextColumn('label', unk_id=other_tag_id, vocab_dict=feature_map,
            tokenizer=tokenizer_func_for_label,)
M
Meiyim 已提交
96 97 98 99 100 101 102 103 104 105
    ])

    def before(seg, label):
        seg, orig_pos = np.split(seg, 2)
        aligned_label = label[orig_pos]
        seg, _ = tokenizer.truncate(seg, [], args.max_seqlen)
        aligned_label, _ = tokenizer.truncate(aligned_label, [], args.max_seqlen)
        orig_pos, _ = tokenizer.truncate(orig_pos, [], args.max_seqlen)

        sentence, segments = tokenizer.build_for_ernie(seg) #utils.data.build_1_pair(seg, max_seqlen=args.max_seqlen, cls_id=cls_id, sep_id=sep_id)
M
Meiyim 已提交
106 107
        aligned_label = np.concatenate([[0], aligned_label, [0]], 0)
        orig_pos = np.concatenate([[0], orig_pos, [0]])
M
Meiyim 已提交
108 109 110 111 112 113

        assert len(aligned_label) == len(sentence) == len(orig_pos), (len(aligned_label), len(sentence), len(orig_pos)) # alinged
        return sentence, segments, aligned_label, label, orig_pos

    train_ds = feature_column.build_dataset('train', data_dir=os.path.join(args.data_dir, 'train'), shuffle=True, repeat=False, use_gz=False) \
                                   .map(before) \
M
Meiyim 已提交
114
                                   .padded_batch(args.bsz, (0,0,0, other_tag_id + 1, 0)) \
M
Meiyim 已提交
115 116 117

    dev_ds = feature_column.build_dataset('dev', data_dir=os.path.join(args.data_dir, 'dev'), shuffle=False, repeat=False, use_gz=False) \
                                   .map(before) \
M
Meiyim 已提交
118
                                   .padded_batch(args.bsz, (0,0,0, other_tag_id + 1,0)) \
M
Meiyim 已提交
119 120 121

    test_ds = feature_column.build_dataset('test', data_dir=os.path.join(args.data_dir, 'test'), shuffle=False, repeat=False, use_gz=False) \
                                   .map(before) \
M
Meiyim 已提交
122
                                   .padded_batch(args.bsz, (0,0,0, other_tag_id + 1,0)) \
M
Meiyim 已提交
123 124 125 126 127 128 129 130 131 132 133 134 135



    shapes = ([-1, args.max_seqlen], [-1, args.max_seqlen], [-1, args.max_seqlen])
    types = ('int64', 'int64', 'int64')

    train_ds.data_shapes = shapes
    train_ds.data_types = types
    dev_ds.data_shapes = shapes
    dev_ds.data_types = types
    test_ds.data_shapes = shapes
    test_ds.data_types = types

M
Meiyim 已提交
136
    place = F.CUDAPlace(0)
M
Meiyim 已提交
137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165

    @FD.no_grad
    def evaluate(model, dataset):
        model.eval()
        chunkf1 = propeller.metrics.ChunkF1(None, None, None, len(feature_map))
        for step, (ids, sids, aligned_label, label, orig_pos) in enumerate(tqdm(dataset.start(place))):
            loss, logits = model(ids, sids)
            #print('\n'.join(map(str, logits.numpy().tolist())))

            assert orig_pos.shape[0] == logits.shape[0] == ids.shape[0] == label.shape[0]
            for pos, lo, la, id in zip(orig_pos.numpy(), logits.numpy(), label.numpy(), ids.numpy()):
                _dic = OrderedDict()
                assert len(pos) ==len(lo) == len(id)
                for _pos, _lo, _id in zip(pos, lo, id):
                    if _id > tokenizer.mask_id: # [MASK] is the largest special token
                        _dic.setdefault(_pos, []).append(_lo)
                merged_lo = np.array([np.array(l).mean(0) for _, l in six.iteritems(_dic)])
                merged_preds = np.argmax(merged_lo, -1)
                la = la[np.where(la != (other_tag_id + 1))] #remove pad
                if len(la) > len(merged_preds):
                    log.warn('accuracy loss due to truncation: label len:%d, truncate to %d' % (len(la), len(merged_preds)))
                    merged_preds = np.pad(merged_preds, [0, len(la) - len(merged_preds)], mode='constant', constant_values=7)
                else:
                    assert len(la) == len(merged_preds), 'expect label == prediction, got %d vs %d' % (la.shape, merged_preds.shape)
                chunkf1.update((merged_preds, la, np.array(len(la))))
        #f1 = f1_score(np.concatenate(all_label), np.concatenate(all_pred), average='macro')
        f1 = chunkf1.eval()
        model.train()
        return f1
M
Meiyim 已提交
166
    with FD.guard(place):
M
Meiyim 已提交
167
        model = ErnieModelForTokenClassification.from_pretrained(args.from_pretrained, num_labels=len(feature_map), name='', has_pooler=False)
M
Meiyim 已提交
168

M
Meiyim 已提交
169 170 171 172 173
        g_clip = F.clip.GradientClipByGlobalNorm(1.0) #experimental
        opt = AdamW(
                learning_rate=LinearDecay(args.lr, int(args.warmup_proportion * args.max_steps), args.max_steps), 
                parameter_list=model.parameters(), 
                weight_decay=args.wd, grad_clip=g_clip)
M
Meiyim 已提交
174 175
        #opt = F.optimizer.AdamOptimizer(learning_rate=LinearDecay(args.lr, args.warmup_steps, args.max_steps), parameter_list=model.parameters())
        for epoch in range(args.epoch):
M
Meiyim 已提交
176
            for step, (ids, sids, aligned_label, label, orig_pos) in enumerate(tqdm(train_ds.start(place))):
M
Meiyim 已提交
177
                loss, logits = model(ids, sids, labels=aligned_label, loss_weights=L.cast(ids > tokenizer.mask_id, 'float32')) # [MASK] is the largest special token
M
Meiyim 已提交
178 179
                loss.backward()
                if step % 10 == 0 :
M
Meiyim 已提交
180
                    log.debug('train loss %.5f, lr %.3e' % (loss.numpy(), opt.current_step_lr()))
M
Meiyim 已提交
181 182 183
                opt.minimize(loss)
                model.clear_gradients()
                if step % 100 == 0 :
M
Meiyim 已提交
184
                    f1 = evaluate(model, dev_ds)
M
Meiyim 已提交
185 186
                    log.debug('eval f1: %.5f' % f1)

M
Meiyim 已提交
187 188 189 190
        f1 = evaluate(model, dev_ds)
        log.debug('final eval f1: %.5f' % f1)
        if args.save_dir is not None:
            F.save_dygraph(model.state_dict(), args.save_dir)
M
Meiyim 已提交
191 192