README.md 1.9 KB
Newer Older
L
liyukun01 已提交
1
# ERNIE-GEN
M
Meiyim 已提交
2 3 4 5 6 7

[ERNIE-GEN](https://arxiv.org/pdf/2001.11314.pdf) is a multi-flow language generation framework for both pre-training and fine-tuning.
Only finetune strategy is illustrated in this section.

## Finetune

L
liyukun01 已提交
8
We use Abstractive Summarization task CNN/DailyMail to illustate usage of ERNIE-GEN, you can download preprocessed finetune data from [here](https://ernie-github.cdn.bcebos.com/data-cnndm.tar.gz)
M
Meiyim 已提交
9

L
liyukun01 已提交
10
To starts finetuning ERNIE-GEN, run:
M
Meiyim 已提交
11 12 13 14

```script
python3 -m paddle.distributed.launch \
    --log_dir ./log  \
M
Meiyim 已提交
15
    ./demo/seq2seq/finetune_seq2seq_dygraph.py \
M
Meiyim 已提交
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54
    --from_pretrained ernie-gen-base-en \
    --data_dir ./data/cnndm \
    --save_dir ./model_cnndm \
    --label_smooth 0.1 \
    --use_random_noice \
    --noise_prob 0.7 \
    --predict_output_dir ./pred \
    --max_steps $((287113*30/64))
```

Note that you need more than 2 GPUs to run the finetuning. 
During multi-gpu finetuning, `max_steps` is used as stop criteria rather than `epoch` to prevent dead block. 
We simply canculate `max_steps` with: `EPOCH * NUM_TRIAN_EXAMPLE / TOTAL_BATCH`.
This demo script will save a finetuned model at `--save_dir`, and do muti-gpu prediction every `--eval_steps` and save prediction results at `--predict_output_dir`.


### Evalution

While finetuning, a serials of prediction files is generated. 
First you need to sort and join all files with:

```shell
sort -t$'\t' -k1n ./pred/pred.step60000.* |awk -F"\t" '{print $2}'> final_prediction
```

then use `./eval_cnndm/cnndm_eval.sh` to calcuate all metrics
(`pyrouge` is required to evalute CNN/Daily Mail.)
 
```shell
sh cnndm_eval.sh final_prediction ./data/cnndm/dev.summary
```


### Inference 

To run beam serach decode after you got a finetuned model. try:

```shell

M
Meiyim 已提交
55
cat one_column_source_text| python3 demo/seq2seq/decode.py \
M
Meiyim 已提交
56 57 58 59 60 61
    --from_pretrained ./ernie_gen_large \
    --save_dir ./model_cnndm \
    --bsz 8
```