finetune_classifier.py 9.2 KB
Newer Older
C
chenxuyi 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
import re
import time
import logging
from random import random
from functools import reduce, partial

import numpy as np
import multiprocessing

import paddle
import paddle.fluid as F
import paddle.fluid.layers as L

from model.ernie import ErnieModel
from optimization import optimization
import utils.data

from propeller import log
import propeller.paddle as propeller
log.setLevel(logging.DEBUG)

class ClassificationErnieModel(propeller.train.Model):
    """propeller Model wraper for paddle-ERNIE """
    def __init__(self, hparam, mode, run_config):
        self.hparam = hparam
        self.mode = mode
        self.run_config = run_config

    def forward(self, features):
        src_ids, sent_ids = features
        zero = L.fill_constant([1], dtype='int64', value=0)
        input_mask = L.cast(L.logical_not(L.equal(src_ids, zero)), 'float32') # assume pad id == 0
        #input_mask = L.unsqueeze(input_mask, axes=[2])
        d_shape = L.shape(src_ids)
        seqlen = d_shape[1]
        batch_size = d_shape[0]
        pos_ids = L.unsqueeze(L.range(0, seqlen, 1, dtype='int32'), axes=[0])
        pos_ids = L.expand(pos_ids, [batch_size, 1])
        pos_ids = L.unsqueeze(pos_ids, axes=[2])
        pos_ids = L.cast(pos_ids, 'int64')
        pos_ids.stop_gradient = True
        input_mask.stop_gradient = True
C
chenxuyi 已提交
58
        task_ids = L.zeros_like(src_ids) + self.hparam.task_id
C
chenxuyi 已提交
59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130
        task_ids.stop_gradient = True

        ernie = ErnieModel(
            src_ids=src_ids,
            position_ids=pos_ids,
            sentence_ids=sent_ids,
            task_ids=task_ids,
            input_mask=input_mask,
            config=self.hparam,
            use_fp16=self.hparam['use_fp16']
        )

        cls_feats = ernie.get_pooled_output()

        cls_feats = L.dropout(
            x=cls_feats,
            dropout_prob=0.1,
            dropout_implementation="upscale_in_train"
        )

        logits = L.fc(
            input=cls_feats,
            size=self.hparam['num_label'],
            param_attr=F.ParamAttr(
                name="cls_out_w",
                initializer=F.initializer.TruncatedNormal(scale=0.02)),
            bias_attr=F.ParamAttr(
                name="cls_out_b", initializer=F.initializer.Constant(0.))
        )

        propeller.summary.histogram('pred', logits)

        if self.mode is propeller.RunMode.PREDICT:
            probs = L.softmax(logits)
            return probs
        else:
            return logits

    def loss(self, predictions, labels):
        ce_loss, probs = L.softmax_with_cross_entropy(
            logits=predictions, label=labels, return_softmax=True)
        #L.Print(ce_loss, message='per_example_loss')
        loss = L.mean(x=ce_loss)
        return loss

    def backward(self, loss):
        scheduled_lr, _ = optimization(
            loss=loss,
            warmup_steps=int(self.run_config.max_steps * self.hparam['warmup_proportion']),
            num_train_steps=self.run_config.max_steps,
            learning_rate=self.hparam['learning_rate'],
            train_program=F.default_main_program(), 
            startup_prog=F.default_startup_program(),
            weight_decay=self.hparam['weight_decay'],
            scheduler="linear_warmup_decay",)
        propeller.summary.scalar('lr', scheduled_lr)

    def metrics(self, predictions, label):
        predictions = L.argmax(predictions, axis=1)
        predictions = L.unsqueeze(predictions, axes=[1])
        acc = propeller.metrics.Acc(label, predictions)
        #auc = propeller.metrics.Auc(label, predictions)
        return {'acc': acc}


if __name__ == '__main__':
    parser = propeller.ArgumentParser('classify model with ERNIE')
    parser.add_argument('--max_seqlen', type=int, default=128)
    parser.add_argument('--data_dir', type=str, required=True)
    parser.add_argument('--vocab_file', type=str, required=True)
    parser.add_argument('--do_predict', action='store_true')
    parser.add_argument('--warm_start_from', type=str)
C
chenxuyi 已提交
131 132
    parser.add_argument('--sentence_piece_model', type=str, default=None)
    parser.add_argument('--word_dict', type=str, default=None)
C
chenxuyi 已提交
133 134 135 136 137 138 139 140 141 142
    args = parser.parse_args()
    run_config = propeller.parse_runconfig(args)
    hparams = propeller.parse_hparam(args)


    vocab = {j.strip().split(b'\t')[0].decode('utf8'): i for i, j in enumerate(open(args.vocab_file, 'rb'))}
    sep_id = vocab['[SEP]']
    cls_id = vocab['[CLS]']
    unk_id = vocab['[UNK]']

C
chenxuyi 已提交
143 144 145 146 147 148
    if args.sentence_piece_model is not None:
        if args.word_dict is None:
            raise ValueError('--word_dict no specified in subword Model')
        tokenizer = utils.data.WSSPTokenizer(args.sentence_piece_model, args.word_dict, ws=True, lower=True)
    else:
        tokenizer = utils.data.CharTokenizer(vocab.keys())
C
chenxuyi 已提交
149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188

    def tokenizer_func(inputs):
        '''avoid pickle error'''
        ret = tokenizer(inputs)
        return ret

    if not args.do_predict:
        feature_column = propeller.data.FeatureColumns([
            propeller.data.TextColumn('title',unk_id=unk_id, vocab_dict=vocab, tokenizer=tokenizer_func),
            propeller.data.LabelColumn('label'),
        ])

        def before(seg_a, label):
            sentence, segments = utils.data.build_1_pair(seg_a, max_seqlen=args.max_seqlen, cls_id=cls_id, sep_id=sep_id)
            return sentence, segments, label

        def after(sentence, segments, label):
            sentence, segments, label = utils.data.expand_dims(sentence, segments, label)
            return sentence, segments, label

        log.debug(os.path.join(args.data_dir, 'train'))
        train_ds = feature_column.build_dataset('train', data_dir=os.path.join(args.data_dir, 'train'), shuffle=True, repeat=True, use_gz=False) \
                                       .map(before) \
                                       .padded_batch(hparams.batch_size, (0, 0, 0)) \
                                       .map(after) 

        dev_ds = feature_column.build_dataset('dev', data_dir=os.path.join(args.data_dir, 'dev'), shuffle=False, repeat=False, use_gz=False) \
                                       .map(before) \
                                       .padded_batch(hparams.batch_size, (0, 0, 0)) \
                                       .map(after) 


        shapes = ([-1, args.max_seqlen, 1], [-1, args.max_seqlen, 1], [-1, 1])
        types = ('int64', 'int64', 'int64')

        train_ds.data_shapes = shapes
        train_ds.data_types = types
        dev_ds.data_shapes = shapes
        dev_ds.data_types = types

C
chenxuyi 已提交
189
        varname_to_warmstart = re.compile(r'^encoder.*[wb]_0$|^.*embedding$|^.*bias$|^.*scale$|^pooled_fc.[wb]_0$')
C
chenxuyi 已提交
190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229
        warm_start_dir = args.warm_start_from
        ws = propeller.WarmStartSetting(
                predicate_fn=lambda v: varname_to_warmstart.match(v.name) and os.path.exists(os.path.join(warm_start_dir, v.name)),
                from_dir=warm_start_dir
            )

        best_exporter = propeller.train.exporter.BestInferenceModelExporter(os.path.join(run_config.model_dir, 'best'), cmp_fn=lambda old, new: new['eval']['acc'] > old['eval']['acc'])
        propeller.train.train_and_eval(
                model_class_or_model_fn=ClassificationErnieModel, 
                params=hparams, 
                run_config=run_config, 
                train_dataset=train_ds, 
                eval_dataset=dev_ds,
                warm_start_setting=ws, 
                exporters=[best_exporter])
        print('dev_acc\t%.5f' % (best_exporter._best['eval']['acc']))
    else:
        feature_column = propeller.data.FeatureColumns([
            propeller.data.TextColumn('title',unk_id=unk_id, vocab_dict=vocab, tokenizer=tokenizer_func),
            propeller.data.LabelColumn('label'),
        ])
        def before(seg_a):
            sentence, segments = utils.data.build_1_pair(seg_a, max_seqlen=args.max_seqlen, cls_id=cls_id, sep_id=sep_id)
            return sentence, segments
        def after(sentence, segments):
            sentence, segments = utils.data.expand_dims(sentence, segments)
            return sentence, segments
        predict_ds = feature_column.build_dataset_from_stdin('predict') \
                               .map(before) \
                               .padded_batch(hparams.batch_size, (0, 0)) \
                               .map(after) 
        shapes = ([-1, args.max_seqlen, 1], [-1, args.max_seqlen, 1])
        types = ('int64', 'int64')

        predict_ds.data_shapes = shapes
        predict_ds.data_types = types
        finetuned_model = propeller.Learner(ClassificationErnieModel, run_config, hparams)
        for logits, in finetuned_model.predict(predict_ds, ckpt=-1): # ckpt=-1 means last step
            print(np.argmax(logits))