convert_params.py 8.5 KB
Newer Older
Y
Yibing Liu 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
#   Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Convert Google official BERT models to Fluid parameters."""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import numpy as np
import argparse
import collections
23
from utils.args import print_arguments
Y
Yibing Liu 已提交
24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137
import tensorflow as tf
import paddle.fluid as fluid
from tensorflow.python import pywrap_tensorflow


def parse_args():
    parser = argparse.ArgumentParser(__doc__)
    parser.add_argument(
        "--init_tf_checkpoint",
        type=str,
        required=True,
        help="Initial TF checkpoint (a pre-trained BERT model).")

    parser.add_argument(
        "--fluid_params_dir",
        type=str,
        required=True,
        help="The directory to store converted Fluid parameters.")
    args = parser.parse_args()
    return args


def parse(init_checkpoint):
    tf_fluid_param_name_map = collections.OrderedDict()
    tf_param_name_shape_map = collections.OrderedDict()

    init_vars = tf.train.list_variables(init_checkpoint)
    for (var_name, var_shape) in init_vars:
        fluid_param_name = ''
        if var_name.startswith('bert/'):
            key = var_name[5:]
            if (key.startswith('embeddings/')):
                if (key.endswith('LayerNorm/gamma')):
                    fluid_param_name = 'pre_encoder_layer_norm_scale'
                elif (key.endswith('LayerNorm/beta')):
                    fluid_param_name = 'pre_encoder_layer_norm_bias'
                elif (key.endswith('position_embeddings')):
                    fluid_param_name = 'pos_embedding'
                elif (key.endswith('word_embeddings')):
                    fluid_param_name = 'word_embedding'
                elif (key.endswith('token_type_embeddings')):
                    fluid_param_name = 'sent_embedding'
                else:
                    print("ignored param: %s" % var_name)
            elif (key.startswith('encoder/')):
                key = key[8:]
                layer_num = int(key[key.find('_') + 1:key.find('/')])
                suffix = "encoder_layer_" + str(layer_num)
                if key.endswith('attention/output/LayerNorm/beta'):
                    fluid_param_name = suffix + '_post_att_layer_norm_bias'
                elif key.endswith('attention/output/LayerNorm/gamma'):
                    fluid_param_name = suffix + '_post_att_layer_norm_scale'
                elif key.endswith('attention/output/dense/bias'):
                    fluid_param_name = suffix + '_multi_head_att_output_fc.b_0'
                elif key.endswith('attention/output/dense/kernel'):
                    fluid_param_name = suffix + '_multi_head_att_output_fc.w_0'
                elif key.endswith('attention/self/key/bias'):
                    fluid_param_name = suffix + '_multi_head_att_key_fc.b_0'
                elif key.endswith('attention/self/key/kernel'):
                    fluid_param_name = suffix + '_multi_head_att_key_fc.w_0'
                elif key.endswith('attention/self/query/bias'):
                    fluid_param_name = suffix + '_multi_head_att_query_fc.b_0'
                elif key.endswith('attention/self/query/kernel'):
                    fluid_param_name = suffix + '_multi_head_att_query_fc.w_0'
                elif key.endswith('attention/self/value/bias'):
                    fluid_param_name = suffix + '_multi_head_att_value_fc.b_0'
                elif key.endswith('attention/self/value/kernel'):
                    fluid_param_name = suffix + '_multi_head_att_value_fc.w_0'
                elif key.endswith('intermediate/dense/bias'):
                    fluid_param_name = suffix + '_ffn_fc_0.b_0'
                elif key.endswith('intermediate/dense/kernel'):
                    fluid_param_name = suffix + '_ffn_fc_0.w_0'
                elif key.endswith('output/LayerNorm/beta'):
                    fluid_param_name = suffix + '_post_ffn_layer_norm_bias'
                elif key.endswith('output/LayerNorm/gamma'):
                    fluid_param_name = suffix + '_post_ffn_layer_norm_scale'
                elif key.endswith('output/dense/bias'):
                    fluid_param_name = suffix + '_ffn_fc_1.b_0'
                elif key.endswith('output/dense/kernel'):
                    fluid_param_name = suffix + '_ffn_fc_1.w_0'
                else:
                    print("ignored param: %s" % var_name)
            elif (key.startswith('pooler/')):
                if key.endswith('dense/bias'):
                    fluid_param_name = 'pooled_fc.b_0'
                elif key.endswith('dense/kernel'):
                    fluid_param_name = 'pooled_fc.w_0'
                else:
                    print("ignored param: %s" % var_name)
            else:
                print("ignored param: %s" % var_name)

        elif var_name.startswith('cls/'):
            if var_name == 'cls/predictions/output_bias':
                fluid_param_name = 'mask_lm_out_fc.b_0'
            elif var_name == 'cls/predictions/transform/LayerNorm/beta':
                fluid_param_name = 'mask_lm_trans_layer_norm_bias'
            elif var_name == 'cls/predictions/transform/LayerNorm/gamma':
                fluid_param_name = 'mask_lm_trans_layer_norm_scale'
            elif var_name == 'cls/predictions/transform/dense/bias':
                fluid_param_name = 'mask_lm_trans_fc.b_0'
            elif var_name == 'cls/predictions/transform/dense/kernel':
                fluid_param_name = 'mask_lm_trans_fc.w_0'
            elif var_name == 'cls/seq_relationship/output_bias':
                fluid_param_name = 'next_sent_fc.b_0'
            elif var_name == 'cls/seq_relationship/output_weights':
                fluid_param_name = 'next_sent_fc.w_0'
            elif var_name == 'cls/squad/output_weights':
                fluid_param_name = 'cls_squad_out_w'
            elif var_name == 'cls/squad/output_bias':
                fluid_param_name = 'cls_squad_out_b'
            else:
                print("ignored param: %s" % var_name)
        else:
Y
Yibing Liu 已提交
138 139 140 141 142 143
            if var_name == 'output_weights':
                fluid_param_name = 'cls_out_w'
            elif var_name == 'output_bias':
                fluid_param_name = 'cls_out_b'
            else:
                print("ignored param: %s" % var_name)
Y
Yibing Liu 已提交
144

C
cclauss 已提交
145
        if fluid_param_name != '':
Y
Yibing Liu 已提交
146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179
            tf_fluid_param_name_map[var_name] = fluid_param_name
            tf_param_name_shape_map[var_name] = var_shape
            fluid_param_name = ''

    return tf_fluid_param_name_map, tf_param_name_shape_map


def convert(args):
    tf_fluid_param_name_map, tf_param_name_shape_map = parse(
        args.init_tf_checkpoint)
    program = fluid.Program()
    global_block = program.global_block()
    for param in tf_fluid_param_name_map:
        global_block.create_parameter(
            name=tf_fluid_param_name_map[param],
            shape=tf_param_name_shape_map[param],
            dtype='float32',
            initializer=fluid.initializer.Constant(value=0.0))

    place = fluid.core.CPUPlace()
    exe = fluid.Executor(place)
    exe.run(program)

    print('---------------------- Converted Parameters -----------------------')
    print('###### [TF param name] --> [Fluid param name]  [param shape] ######')
    print('-------------------------------------------------------------------')

    reader = pywrap_tensorflow.NewCheckpointReader(args.init_tf_checkpoint)
    for param in tf_fluid_param_name_map:
        value = reader.get_tensor(param)
        if param == 'cls/seq_relationship/output_weights':
            value = np.transpose(value)
        if param == 'cls/squad/output_weights':
            value = np.transpose(value)
Y
Yibing Liu 已提交
180 181
        if param == 'output_weights':
            value = np.transpose(value)
Y
Yibing Liu 已提交
182 183 184 185 186 187 188 189 190 191 192
        fluid.global_scope().find_var(tf_fluid_param_name_map[
            param]).get_tensor().set(value, place)
        print(param, ' --> ', tf_fluid_param_name_map[param], '  ', value.shape)

    fluid.io.save_params(exe, args.fluid_params_dir, main_program=program)


if __name__ == '__main__':
    args = parse_args()
    print_arguments(args)
    convert(args)