embedding.py 6.7 KB
Newer Older
P
pfZhu 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Modified from espnet(https://github.com/espnet/espnet)
"""Positional Encoding Module."""
import math

import paddle
from paddle import nn


class PositionalEncoding(nn.Layer):
    """Positional encoding.

    Args:
        d_model (int):  Embedding dimension.
        dropout_rate (float): Dropout rate.
        max_len (int): Maximum input length.
        reverse (bool): Whether to reverse the input position.
        type (str): dtype of param
    """

    def __init__(self,
                 d_model,
                 dropout_rate,
                 max_len=5000,
                 dtype="float32",
                 reverse=False):
        """Construct an PositionalEncoding object."""
        super().__init__()
        self.d_model = d_model
        self.reverse = reverse
        self.xscale = math.sqrt(self.d_model)
        self.dropout = nn.Dropout(p=dropout_rate)
        self.pe = None
        self.dtype = dtype
        self.extend_pe(paddle.expand(paddle.zeros([1]), (1, max_len)))

    def extend_pe(self, x):
        """Reset the positional encodings."""
        x_shape = paddle.shape(x)
        pe = paddle.zeros([x_shape[1], self.d_model])
        if self.reverse:
            position = paddle.arange(
                x_shape[1] - 1, -1, -1.0, dtype=self.dtype).unsqueeze(1)
        else:
            position = paddle.arange(
                0, x_shape[1], dtype=self.dtype).unsqueeze(1)
        div_term = paddle.exp(
            paddle.arange(0, self.d_model, 2, dtype=self.dtype) *
            -(math.log(10000.0) / self.d_model))
        pe[:, 0::2] = paddle.sin(position * div_term)
        pe[:, 1::2] = paddle.cos(position * div_term)
        pe = pe.unsqueeze(0)
        self.pe = pe

    def forward(self, x: paddle.Tensor):
        """Add positional encoding.

        Args:
            x (Tensor): Input tensor (batch, time, `*`).

        Returns:
            Tensor: Encoded tensor (batch, time, `*`).
        """
        self.extend_pe(x)
        T = paddle.shape(x)[1]
        x = x * self.xscale + self.pe[:, :T]
        return self.dropout(x)


class ScaledPositionalEncoding(PositionalEncoding):
    """Scaled positional encoding module.
    See Sec. 3.2  https://arxiv.org/abs/1809.08895

    Args:
        d_model (int): Embedding dimension.
        dropout_rate (float): Dropout rate.
        max_len (int): Maximum input length.
        dtype (str): dtype of param
    """

    def __init__(self, d_model, dropout_rate, max_len=5000, dtype="float32"):
        """Initialize class."""
        super().__init__(
            d_model=d_model,
            dropout_rate=dropout_rate,
            max_len=max_len,
            dtype=dtype)
        x = paddle.ones([1], dtype=self.dtype)
        self.alpha = paddle.create_parameter(
            shape=x.shape,
            dtype=self.dtype,
            default_initializer=nn.initializer.Assign(x))

    def reset_parameters(self):
        """Reset parameters."""
        self.alpha = paddle.ones([1])

    def forward(self, x):
        """Add positional encoding.

        Args:
            x (Tensor): Input tensor (batch, time, `*`).
        Returns:
            Tensor: Encoded tensor (batch, time, `*`).
        """
        self.extend_pe(x)
        T = paddle.shape(x)[1]
        x = x + self.alpha * self.pe[:, :T]
        return self.dropout(x)


class RelPositionalEncoding(nn.Layer):
    """Relative positional encoding module (new implementation).
    Details can be found in https://github.com/espnet/espnet/pull/2816.
    See : Appendix B in https://arxiv.org/abs/1901.02860

    Args:
        d_model (int): Embedding dimension.
        dropout_rate (float): Dropout rate.
        max_len (int): Maximum input length.
    """

    def __init__(self, d_model, dropout_rate, max_len=5000, dtype="float32"):
        """Construct an PositionalEncoding object."""
        super().__init__()
        self.d_model = d_model
        self.xscale = math.sqrt(self.d_model)
        self.dropout = nn.Dropout(p=dropout_rate)
        self.pe = None
        self.dtype = dtype
        self.extend_pe(paddle.expand(paddle.zeros([1]), (1, max_len)))

    def extend_pe(self, x):
        """Reset the positional encodings."""
        if self.pe is not None:
            # self.pe contains both positive and negative parts
            # the length of self.pe is 2 * input_len - 1
            if paddle.shape(self.pe)[1] >= paddle.shape(x)[1] * 2 - 1:
                return
        # Suppose `i` means to the position of query vecotr and `j` means the
        # position of key vector. We use position relative positions when keys
        # are to the left (i>j) and negative relative positions otherwise (i<j).
        x_shape = paddle.shape(x)
        pe_positive = paddle.zeros([x_shape[1], self.d_model])
        pe_negative = paddle.zeros([x_shape[1], self.d_model])
        position = paddle.arange(0, x_shape[1], dtype=self.dtype).unsqueeze(1)
        div_term = paddle.exp(
            paddle.arange(0, self.d_model, 2, dtype=self.dtype) *
            -(math.log(10000.0) / self.d_model))
        pe_positive[:, 0::2] = paddle.sin(position * div_term)
        pe_positive[:, 1::2] = paddle.cos(position * div_term)
        pe_negative[:, 0::2] = paddle.sin(-1 * position * div_term)
        pe_negative[:, 1::2] = paddle.cos(-1 * position * div_term)

        # Reserve the order of positive indices and concat both positive and
        # negative indices. This is used to support the shifting trick
        # as in https://arxiv.org/abs/1901.02860
        pe_positive = paddle.flip(pe_positive, [0]).unsqueeze(0)
        pe_negative = pe_negative[1:].unsqueeze(0)
        pe = paddle.concat([pe_positive, pe_negative], axis=1)
        self.pe = pe

    def forward(self, x: paddle.Tensor):
        """Add positional encoding.
        Args:
            x (Tensor):Input tensor (batch, time, `*`).
        Returns:
            Tensor: Encoded tensor (batch, time, `*`).
        """
        self.extend_pe(x)
        x = x * self.xscale
        T = paddle.shape(x)[1]
        pe_size = paddle.shape(self.pe)
        pos_emb = self.pe[:, pe_size[1] // 2 - T + 1:pe_size[1] // 2 + T, ]
        return self.dropout(x), self.dropout(pos_emb)