ernie_vil.py 10.9 KB
Newer Older
T
tangjiji 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""ERNIE-ViL model"""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import json

import six
import paddle.fluid as fluid

from model.vl_transformer_encoder import encoder, pre_process_layer


class ErnieVilConfig(object):
    """
    configuration for ernie-vil
    """
    def __init__(self, config_path):
        self._config_dict = self._parse(config_path)

    def _parse(self, config_path):
        try:
            with open(config_path) as json_file:
                config_dict = json.load(json_file)
        except Exception:
            raise IOError("Error in parsing Ernie model config file '%s'" %
                          config_path)
        else:
            return config_dict

    def __getitem__(self, key):
        return self._config_dict[key]

    def print_config(self):
        """
        print configuration value
        """
        for arg, value in sorted(six.iteritems(self._config_dict)):
            print('%s: %s' % (arg, value))
        print('------------------------------------------------')


class ErnieVilModel(object):
    """
    main class for ERNIE-ViL model
    """
    def __init__(self,
                 src_ids,
                 position_ids,
                 sentence_ids,
                 input_mask,
                 image_embeddings,
                 image_loc,
                 input_image_mask,
                 config,
                 predict_feature=False,
                 predict_class=True,
                 use_attr=False,
                 use_soft_label=True):
        
        self._emb_size = config['hidden_size']
        self._n_layer = config['num_hidden_layers']
        self._n_head = config['num_attention_heads']
        
        self._v_head = config['v_num_attention_heads']
        self._v_emb_size = config['v_hidden_size']
        self._v_inter_hid = config['v_intermediate_size']

        self._co_head = config['co_num_attention_heads']
        self._co_emb_size = config['co_hidden_size']
        self._co_inter_hid = config['co_intermediate_size']

        self._voc_size = config['vocab_size']
        self._class_size = config['class_size']
        self._class_attr_size = config['class_attr_size']
        self._max_position_seq_len = config['max_position_embeddings']
        self._sent_types = config['sent_type_vocab_size']
        self._task_types = config['task_type_vocab_size']
        self._hidden_act = config['hidden_act']
        self._prepostprocess_dropout = config['hidden_dropout_prob']
        self._attention_dropout = config['attention_probs_dropout_prob']
        self._v_biattention_id = config['v_biattention_id']
        self._t_biattention_id = config['t_biattention_id']

        self._predict_feature = predict_feature
        self._predict_class = predict_class
        self._use_attr = use_attr
        self._use_soft_label = use_soft_label
        self._word_emb_name = "word_embedding"
        self._pos_emb_name = "pos_embedding"
        self._sent_emb_name = "sent_embedding"
        self._image_emb_name = "image_embedding"
        self._loc_emb_name = "loc_embedding"
        self._dtype = "float32"
        self._emb_dtype = "float32"

        # Initialize all weigths by truncated normal initializer, and all biases
        # will be initialized by constant zero by default.
        self._param_initializer = fluid.initializer.TruncatedNormal(
            scale=config['initializer_range'])

T
tangjiji 已提交
117
        self._build_model(src_ids, position_ids, sentence_ids, input_mask, \
T
tangjiji 已提交
118 119
                image_embeddings, image_loc, input_image_mask)

T
tangjiji 已提交
120
    def _build_model(self, src_ids, position_ids, sentence_ids, input_mask, \
T
tangjiji 已提交
121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287
            image_embeddings, image_loc, input_image_mask):
        # padding id in vocabulary must be set to 0
        emb_out = fluid.layers.embedding(
            input=src_ids,
            size=[self._voc_size, self._emb_size],
            dtype=self._emb_dtype,
            param_attr=fluid.ParamAttr(
                name=self._word_emb_name, initializer=self._param_initializer),
            is_sparse=False)

        position_emb_out = fluid.layers.embedding(
            input=position_ids,
            size=[self._max_position_seq_len, self._emb_size],
            dtype=self._emb_dtype,
            param_attr=fluid.ParamAttr(
                name=self._pos_emb_name, initializer=self._param_initializer))

        sent_emb_out = fluid.layers.embedding(
            sentence_ids,
            size=[self._sent_types, self._emb_size],
            dtype=self._emb_dtype,
            param_attr=fluid.ParamAttr(
                name=self._sent_emb_name, initializer=self._param_initializer))

        emb_out = emb_out + position_emb_out
        emb_out = emb_out + sent_emb_out

        emb_out = pre_process_layer(
            emb_out, 'nd', self._prepostprocess_dropout, name='pre_encoder')

        self_attn_mask = fluid.layers.matmul(
            x=input_mask, y=input_mask, transpose_y=True)

        self_attn_mask = fluid.layers.scale(
            x=self_attn_mask, scale=10000.0, bias=-1.0, bias_after_scale=False)
        n_head_self_attn_mask = fluid.layers.stack(
            x=[self_attn_mask] * self._n_head, axis=1)
        n_head_self_attn_mask.stop_gradient = True

        image_embeddings = fluid.layers.fc(image_embeddings,
                                      self._v_emb_size,
                                      param_attr=fluid.ParamAttr(
                                            name="image_emb.w_0",
                                            initializer=self._param_initializer),
                                      bias_attr = "image_emb.b_0",
                                      num_flatten_dims = 2)
        loc_emb_out = fluid.layers.fc(image_loc,
                                      self._v_emb_size,
                                      param_attr=fluid.ParamAttr(
                                            name="image_loc.w_0",
                                            initializer=self._param_initializer),
                                      bias_attr = "image_loc.b_0",
                                      num_flatten_dims = 2)

        emb_vl_out = image_embeddings + loc_emb_out
        emb_vl_out = pre_process_layer(  
            emb_vl_out, 'nd', self._prepostprocess_dropout, name='vl_pre_encoder')

        self_attn_image_mask = fluid.layers.matmul(
            x=input_image_mask, y=input_image_mask, transpose_y=True)

        self_attn_image_mask = fluid.layers.scale(
            x=self_attn_image_mask, scale=10000.0, bias=-1.0, bias_after_scale=False)
        n_head_self_attn_image_mask = fluid.layers.stack(
            x=[self_attn_image_mask] * self._v_head, axis=1)
        n_head_self_attn_image_mask.stop_gradient = True

        self_attn_vl_mask = fluid.layers.matmul(
            x=input_image_mask, y=input_mask, transpose_y=True)
        self_attn_vl_mask = fluid.layers.scale(
            x=self_attn_vl_mask, scale=10000.0, bias=-1.0, bias_after_scale=False)
        n_head_self_attn_vl_mask = fluid.layers.stack(
            x=[self_attn_vl_mask] * self._co_head, axis=1)
        n_head_self_attn_vl_mask.stop_gradient = True

        self._enc_out, self._enc_vl_out = encoder(
            enc_input=emb_out,
            enc_vl_input=emb_vl_out,
            attn_bias=n_head_self_attn_mask,
            attn_image_bias=n_head_self_attn_image_mask,
            attn_vl_bias=n_head_self_attn_vl_mask,
            n_layer=self._n_layer,
            n_head=self._n_head,
            d_key=self._emb_size // self._n_head,
            d_value=self._emb_size // self._n_head,
            d_model=self._emb_size,
            d_inner_hid=self._emb_size * 4,
            v_head=self._v_head,
            v_key=self._v_emb_size // self._v_head,
            v_value=self._v_emb_size // self._v_head,
            v_model=self._v_emb_size,
            v_inner_hid=self._v_inter_hid,
            co_head=self._co_head,
            co_key=self._co_emb_size // self._co_head,
            co_value=self._co_emb_size // self._co_head,
            co_model=self._co_emb_size,
            co_inner_hid=self._co_inter_hid,
            prepostprocess_dropout=self._prepostprocess_dropout,
            attention_dropout=self._attention_dropout,
            relu_dropout=0,
            hidden_act=self._hidden_act,
            preprocess_cmd="",
            postprocess_cmd="dan",
            param_initializer=self._param_initializer,
            v_biattention_id = self._v_biattention_id,
            t_biattention_id = self._t_biattention_id,
            name='encoder')

    def get_sequence_output(self):
        """ 
        Return sequence output of all text and img tokens
        """
        return self._enc_out, self._enc_vl_out

    def get_pooled_output(self):
        """
        Get the first feature of each sequence for classification
        """
        text_cls_feat = fluid.layers.slice(
            input=self._enc_out, axes=[1], starts=[0], ends=[1])

        text_cls_feat = fluid.layers.cast(
            x=text_cls_feat, dtype=self._emb_dtype)

        text_cls_feat = fluid.layers.fc(
            input=text_cls_feat,
            size=self._co_emb_size,
            act="relu",
            param_attr=fluid.ParamAttr(
                name="pooled_fc_text.w_0", initializer=self._param_initializer),
            bias_attr="pooled_fc_text.b_0")

        image_cls_feat = fluid.layers.slice(
            input=self._enc_vl_out, axes=[1], starts=[0], ends=[1])

        image_cls_feat = fluid.layers.cast(
                x=image_cls_feat, dtype=self._emb_dtype)

        image_cls_feat = fluid.layers.fc(
            input=image_cls_feat,
            size=self._co_emb_size,
            act="relu",
            param_attr=fluid.ParamAttr(
                name="pooled_fc_image.w_0", initializer=self._param_initializer),
            bias_attr="pooled_fc_image.b_0")
        return text_cls_feat, image_cls_feat

    def get_match_score(self, text, image, dropout_rate=0.0, mode="mul"):
        """
        match score for text [cls] and image [img] tokens
        """
        if mode == "sum":
            emb_fuse = text + image
        elif mode == "mul":
            emb_fuse = text * image
        else:
            "current mode %s is not supported" % mode
            return
        if dropout_rate > 0.0:

            emb_fuse = fluid.layers.dropout(emb_fuse,
                       self._attention_dropout,
                       dropout_implementation="upscale_in_train")
        return emb_fuse