visual_entailment_reader.py 9.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241
#   Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""data reader for multimodal pretraining"""

from __future__ import print_function
from __future__ import division

import json
import base64
import os
import numpy as np
import gzip
import six
import functools
import paddle.fluid as fluid
from reader.batching import pad_feature_data, pad_batch_data


class ClassifyReader(object):
    """ClassifyReader"""
    def __init__(self,
                 filelist,
                 max_seq_len,
                 tokenizer):

        self.files = open(filelist).readlines()
        self.current_file_index = 0
        self.total_file = len(self.files)
        self.current_file = None
        self.tot_examples_nums = 0

        self.max_seq_len = max_seq_len
        self.pad_id = tokenizer.pad_token_id
        self.sep_id = tokenizer.sep_token_id

        self.trainer_id = int(os.getenv("PADDLE_TRAINER_ID", "0"))
        self.trainer_nums = int(os.getenv("PADDLE_TRAINERS_NUM", "1"))

    def get_num_examples(self):
        """get_num_examples"""
        for index, file_ in enumerate(self.files):
            self.tot_examples_nums += int(os.popen('wc -l '+file_.strip()).read().split()[0])
        return self.tot_examples_nums

    def get_progress(self):
        """return current progress of traning data
        """
        return self.current_epoch, self.current_example, self.current_file_index, self.total_file, self.current_file

    def parse_line(self, line, max_seq_len=512):
        """ parse one line to token_ids, sentence_ids, pos_ids, label
        """
        line = line.strip('\r\n').split(";")

        if len(line) == 14:
            (image_id, data_id, label, token_ids, sent_ids, pos_ids, _, image_w, image_h, \
             number_box, boxes, image_embeddings, _, _) = line
        else:
            raise ValueError("One sample have %d fields!" % len(line))

        def decode_feature(base64_str, size):
            fea_base64 = base64.b64decode(base64_str)
            fea_decode = np.frombuffer(fea_base64, dtype=np.float32)
            shape = size, int(fea_decode.shape[0] / size)
            features = np.resize(fea_decode, shape)
            return features

        token_ids = [int(token) for token in token_ids.split(" ")]
        sent_ids = [int(token) for token in sent_ids.split(" ")]
        pos_ids = [int(token) for token in pos_ids.split(" ")]
        assert len(token_ids) == len(sent_ids) == len(pos_ids), \
            "[Must be true]len(token_ids) == len(sent_ids) == len(pos_ids)"

        number_box = int(number_box)
        boxes = decode_feature(boxes, number_box)

        image_embeddings = decode_feature(image_embeddings, number_box)
        image_embeddings_cls = np.mean(image_embeddings, axis=0, keepdims=True)
        image_embeddings = np.concatenate([image_embeddings_cls, image_embeddings], 0)

        image_location = np.zeros((boxes.shape[0], 5), dtype=np.float32)
        image_location[:, :4] = boxes
        image_location[:, 4] = (image_location[:, 3] - image_location[:, 1]) * (
                image_location[:, 2] - image_location[:, 0]) / (float(image_w) * float(image_h))
        image_location[:, 0] = image_location[:, 0] / float(image_w)
        image_location[:, 1] = image_location[:, 1] / float(image_h)
        image_location[:, 2] = image_location[:, 2] / float(image_w)
        image_location[:, 3] = image_location[:, 3] / float(image_h)
        g_location = np.array([0, 0, 1, 1, 1])
        image_location = np.concatenate([np.expand_dims(g_location, axis=0), image_location], axis=0)
        image_loc = image_location

        if len(token_ids) > max_seq_len:
            token_ids = token_ids[:max_seq_len - 1] + [self.sep_id]
            sent_ids = sent_ids[:max_seq_len]
            pos_ids = pos_ids[:max_seq_len]

        return [token_ids, sent_ids, pos_ids, label, image_loc, image_embeddings, number_box + 1]

    def _prepare_batch_data(self, insts, pad_id=None):
        batch_src_ids = [inst[0] for inst in insts]
        batch_sent_ids = [inst[1] for inst in insts]
        batch_pos_ids = [inst[2] for inst in insts]
        batch_labels = [inst[3] for inst in insts]
        batch_image_loc = [inst[4] for inst in insts]
        batch_image_embedding = [inst[5] for inst in insts]
        batch_image_size = [inst[6] for inst in insts]

        batch_labels = np.array(batch_labels).astype("int64").reshape([-1, 1])

        src_ids, token_mask = pad_batch_data(
            batch_src_ids, pretraining_task='nlu', pad_idx=pad_id, return_input_mask=True)
        sent_ids = pad_batch_data(
            batch_sent_ids, pretraining_task='nlu', pad_idx=pad_id)
        pos_ids = pad_batch_data(
            batch_pos_ids, pretraining_task='nlu', pad_idx=pad_id)


        image_loc = pad_feature_data(batch_image_loc)
        image_embedding, image_mask = pad_feature_data(batch_image_embedding,
                                                       return_mask=True,
                                                       batch_image_size=batch_image_size)

        input_mask = np.concatenate((image_mask, token_mask), axis=1)
        input_mask = np.matmul(input_mask, np.transpose(input_mask, (0, 2, 1)))

        return_list = [
            src_ids, pos_ids, sent_ids, input_mask, image_mask, token_mask,
            image_embedding, image_loc, batch_labels
        ]

        return return_list

    def read_file(self, file):
        """read_file"""
        if file.endswith('.gz'):
            with gzip.open(file, "rt") as f:
                for line in f:
                    parsed_line = self.parse_line(
                        line, max_seq_len=self.max_seq_len)
                    if parsed_line is None:
                        continue
                    yield parsed_line
        else:
            with open(file, "r") as f:
                for line in f:
                    parsed_line = self.parse_line(
                        line, max_seq_len=self.max_seq_len)
                    if parsed_line is None:
                        continue
                    yield parsed_line

    def shuffle_samples(self, sample_generator, buffer=1000):
        """shuffle_samples"""
        samples = []
        try:
            while True:
                while len(samples) < buffer:
                    sample = next(sample_generator)
                    samples.append(sample)
                np.random.shuffle(samples)
                for sample in samples:
                    yield sample
                samples = []
        except StopIteration:
            if len(samples) == 0:
                yield None
            else:
                np.random.shuffle(samples)
                for sample in samples:
                    yield sample

    def data_generator(self,
                       batch_size,
                       epoch,
                       phase):
        """
        data_generator
        """
        if phase != "train":
            epoch = 1
        def wrapper():
            """wrapper"""
            def batch_reader():
                """batch_reader"""
                for epoch_index in range(epoch):
                    self.global_rng = np.random.RandomState(epoch_index)
                    self.current_epoch = epoch_index
                    self.current_example = 0

                    if phase == "train":
                        self.global_rng.shuffle(self.files)

                    for index, file_ in enumerate(self.files):
                        self.current_file_index = index + 1
                        self.current_file = file_

                        batch_records = []
                        for sample in self.shuffle_samples(self.read_file(file=file_.strip())):
                            self.current_example = self.current_example + 1
                            if sample is None:
                                continue
                            if len(batch_records) < batch_size:
                                batch_records.append(sample)
                            else:
                                yield self._prepare_batch_data(batch_records, self.pad_id)
                                batch_records = [sample]
                        if batch_records:
                            yield self._prepare_batch_data(batch_records, self.pad_id)

            all_dev_batches = []
            for batch_data in batch_reader():
                if len(all_dev_batches) < self.trainer_nums:
                    all_dev_batches.append(batch_data)
                if len(all_dev_batches) == self.trainer_nums:
                    yield all_dev_batches[self.trainer_id]
                    all_dev_batches = []

            if phase == "train":
                all_dev_batches = all_dev_batches * self.trainer_nums
                np.random.shuffle(all_dev_batches)

            if self.trainer_id < len(all_dev_batches):
                yield all_dev_batches[self.trainer_id]

        return wrapper


if __name__ == "__main__":
    pass