optimization.py 6.4 KB
Newer Older
T
tangjiji 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167
#    Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#    http://www.apache.org/licenses/LICENSE-2.0

# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

""" text preprocess """

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import numpy as np
import paddle.fluid as fluid

def manual_warmup_decay(learning_rate, warmup_steps, num_train_steps, decay_steps=[], lr_decay_ratio=0.1):
    """ 
    Applies linear warmup of learning rate from 0 and keep constant.
    """
    with fluid.default_main_program()._lr_schedule_guard():
        lr = fluid.layers.tensor.create_global_var(
            shape=[1],
            value=0.0,
            dtype='float32',
            persistable=True,
            name="scheduled_learning_rate")

        global_step = fluid.layers.learning_rate_scheduler._decay_step_counter(
        )
        with fluid.layers.control_flow.Switch() as switch:
            with switch.case(global_step < warmup_steps):
                warmup_lr = learning_rate * (global_step / warmup_steps)
                fluid.layers.tensor.assign(warmup_lr, lr)
            for i, step in enumerate(decay_steps):
                with switch.case(global_step < step):
                    decayed_lr = learning_rate * (global_step / global_step) * pow(lr_decay_ratio, i)
                    fluid.layers.tensor.assign(decayed_lr, lr)
            with switch.default():
                constant_lr = learning_rate * (global_step / global_step) * pow(lr_decay_ratio, len(decay_steps))
                fluid.layers.tensor.assign(constant_lr, lr)

        return lr


def linear_warmup_decay(learning_rate, warmup_steps, num_train_steps):
    """ 
    Applies linear warmup of learning rate from 0 and decay to 0.
    """
    with fluid.default_main_program()._lr_schedule_guard():
        lr = fluid.layers.tensor.create_global_var(
            shape=[1],
            value=0.0,
            dtype='float32',
            persistable=True,
            name="scheduled_learning_rate")

        global_step = fluid.layers.learning_rate_scheduler._decay_step_counter(
        )

        with fluid.layers.control_flow.Switch() as switch:
            with switch.case(global_step < warmup_steps):
                warmup_lr = learning_rate * (global_step / warmup_steps)
                fluid.layers.tensor.assign(warmup_lr, lr)
            with switch.default():
                decayed_lr = fluid.layers.learning_rate_scheduler.polynomial_decay(
                    learning_rate=learning_rate,
                    decay_steps=num_train_steps,
                    end_learning_rate=0.0,
                    power=1.0,
                    cycle=False)
                fluid.layers.tensor.assign(decayed_lr, lr)

        return lr

def optimization(loss,
                 warmup_steps,
                 num_train_steps,
                 learning_rate,
                 train_program,
                 startup_prog,
                 weight_decay,
                 scheduler='linear_warmup_decay',
                 decay_steps=[],
                 lr_decay_dict_file="",
                 lr_decay_ratio=0.1):
    """ 
    optimization implementation 
    """
    if warmup_steps > 0:
        if scheduler == 'noam_decay':
            scheduled_lr = fluid.layers.learning_rate_scheduler \
             .noam_decay(1 / (warmup_steps * (learning_rate ** 2)),
                         warmup_steps)
        elif scheduler == 'linear_warmup_decay':
            scheduled_lr = linear_warmup_decay(learning_rate, warmup_steps,
                                               num_train_steps)
        elif scheduler == 'manual_warmup_decay':
            scheduled_lr = manual_warmup_decay(learning_rate, warmup_steps,
                                               num_train_steps, decay_steps, lr_decay_ratio)
        else:
            raise ValueError("Unkown learning rate scheduler, should be "
                             "'noam_decay' or 'linear_warmup_decay' or 'manual_warmup_decay'")
    else:
        scheduled_lr = fluid.layers.create_global_var(
            name=fluid.unique_name.generate("learning_rate"),
            shape=[1],
            value=learning_rate,
            dtype='float32',
            persistable=True)

    lr_decay_dict = {}
    if lr_decay_dict_file != "":
        with open(lr_decay_dict_file) as f:
            for line in f:
                param, decay_rate = line.strip().split('\t')
                lr_decay_dict[param] = float(decay_rate)

    for param in fluid.default_main_program().block(0).all_parameters():
        if param.name in lr_decay_dict:
            print (param.name, lr_decay_dict[param.name])
            param.optimize_attr['learning_rate'] = lr_decay_dict[param.name]

    optimizer = fluid.optimizer.Adam(learning_rate=scheduled_lr)
    optimizer._learning_rate_map[fluid.default_main_program(
    )] = scheduled_lr


    fluid.clip.set_gradient_clip(
        clip=fluid.clip.GradientClipByGlobalNorm(clip_norm=1.0))

    def exclude_from_weight_decay(name):
        """ 
        Parameters not use weight decay
        """
        if name.find("layer_norm") > -1:
            return True
        bias_suffix = ["_bias", "_b", ".b_0"]
        for suffix in bias_suffix:
            if name.endswith(suffix):
                return True
        return False

    param_list = dict()

    for param in train_program.global_block().all_parameters():
        param_list[param.name] = param * 1.0
        param_list[param.name].stop_gradient = True

    _, param_grads = optimizer.minimize(loss)

    if weight_decay > 0:
        for param, grad in param_grads:
            if exclude_from_weight_decay(param.name):
                continue
            with param.block.program._optimized_guard(
                [param, grad]), fluid.framework.name_scope("weight_decay"):
                updated_param = param - param_list[
                    param.name] * weight_decay * scheduled_lr * param.optimize_attr['learning_rate']
                fluid.layers.assign(output=param, input=updated_param)

    return scheduled_lr