distill.py 8.9 KB
Newer Older
M
Meiyim 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import sys
import os 

import numpy as np
from sklearn.metrics import f1_score
import paddle as P
import paddle.fluid as F
import paddle.fluid.layers as L
import paddle.fluid.dygraph as D
import propeller.paddle  as propeller

from ernie.tokenizing_ernie import ErnieTokenizer
from ernie.modeling_ernie import ErnieModelForSequenceClassification
from ernie.optimization import AdamW, LinearDecay


# 本例子采用chnsenticorp中文情感识别任务作为示范;并且事先通过数据增强扩充了蒸馏所需的无监督数据
# 
# 请从“”下载数据;并数据存放在 ./chnsenticorp-data/
# 数据分为3列:原文;空格切词;情感标签
# 其中第一列为ERNIE的输入;第二列为BoW词袋模型的输入
# 事先统计好的BoW 词典在 ./chnsenticorp-data/vocab.bow.txt

# 定义finetune teacher模型所需要的超参数
SEQLEN=256
BATCH=32
EPOCH=10
LR=5e-5

tokenizer = ErnieTokenizer.from_pretrained('ernie-1.0')

student_vocab = {i.strip(): l for l, i in enumerate(open('./chnsenticorp-data/vocab.bow.txt').readlines())}

def space_tokenizer(i):
    return i.decode('utf8').split()

feature_column = propeller.data.FeatureColumns([
    propeller.data.TextColumn('seg_a', unk_id=tokenizer.unk_id, vocab_dict=tokenizer.vocab, tokenizer=tokenizer.tokenize),
    propeller.data.TextColumn('seg_a_student', unk_id=student_vocab['[UNK]'], vocab_dict=student_vocab, tokenizer=space_tokenizer),
    propeller.data.LabelColumn('label', vocab_dict={
        b"0": 0,
        b"1": 1,
    }),
])

def map_fn(seg_a, seg_a_student, label):
    seg_a, _ = tokenizer.truncate(seg_a, [], seqlen=SEQLEN)
    sentence, segments = tokenizer.build_for_ernie(seg_a)
    return seg_a_student, sentence, segments, label


train_ds = feature_column.build_dataset('train', data_dir='./chnsenticorp-data/train/', shuffle=True, repeat=False, use_gz=False)                                 .map(map_fn)                                 .padded_batch(BATCH,)

train_ds_unlabel = feature_column.build_dataset('train-da', data_dir='./chnsenticorp-data/train-data-augmented/', shuffle=True, repeat=False, use_gz=False)                                 .map(map_fn)                                 .padded_batch(BATCH,)

dev_ds = feature_column.build_dataset('dev', data_dir='./chnsenticorp-data/dev/', shuffle=False, repeat=False, use_gz=False)                                 .map(map_fn)                                 .padded_batch(BATCH,)

shapes = ([-1,SEQLEN],[-1,SEQLEN], [-1, SEQLEN], [-1])
types = ('int64', 'int64', 'int64', 'int64')

train_ds.data_shapes = shapes
train_ds.data_types = types
train_ds_unlabel.data_shapes = shapes
train_ds_unlabel.data_types = types
dev_ds.data_shapes = shapes
dev_ds.data_types = types

place = F.CUDAPlace(0)
D.guard(place).__enter__()

def evaluate_teacher(model, dataset):
    all_pred, all_label = [], []
    with D.base._switch_tracer_mode_guard_(is_train=False):
        model.eval()
        for step, (ids_student, ids, _, labels) in enumerate(dataset.start()):
            _, logits = model(ids)
            pred = L.argmax(logits, -1)
            all_pred.extend(pred.numpy())
            all_label.extend(labels.numpy())
        f1 = f1_score(all_label, all_pred, average='macro')
        model.train()
        return f1
    

teacher_model = ErnieModelForSequenceClassification.from_pretrained('ernie-1.0', num_labels=2)
teacher_model.train()
if not os.path.exists('./teacher_model.pdparams'):
    opt = AdamW(learning_rate=LinearDecay(LR, 9600*EPOCH*0.1/BATCH, 9600*EPOCH/BATCH), parameter_list=teacher_model.parameters(), weight_decay=0.01)
    g_clip = F.dygraph_grad_clip.GradClipByGlobalNorm(1.0)
    for epoch in range(EPOCH):
        for step, (ids_student, ids, sids, labels) in enumerate(train_ds.start(place)):
            loss, logits = teacher_model(ids, labels=labels)
            loss.backward()
            if step % 10 == 0:
                print('[step %03d] teacher train loss %.5f lr %.3e' % (step, loss.numpy(), opt.current_step_lr()))
            opt.minimize(loss, grad_clip=g_clip)
            teacher_model.clear_gradients()
            if step % 100 == 0:
                f1 = evaluate_teacher(teacher_model, dev_ds)
                print('teacher f1: %.5f' %f1)
    D.save_dygraph(teacher_model.state_dict(), './teacher_model')
else:
    state_dict, _ = D.load_dygraph('./teacher_model')
    teacher_model.set_dict(state_dict)
    f1 = evaluate_teacher(teacher_model, dev_ds)
    print('teacher f1: %.5f' %f1)


# 定义finetune student 模型所需要的超参数
SEQLEN=256
BATCH=100
EPOCH=10
LR=1e-4


def evaluate_student(model, dataset):
    all_pred, all_label = [], []
    with D.base._switch_tracer_mode_guard_(is_train=False):
        model.eval()
        for step, (ids_student, ids, _, labels) in enumerate(dataset.start()):
            _, logits = model(ids_student)
            pred = L.argmax(logits, -1)
            all_pred.extend(pred.numpy())
            all_label.extend(labels.numpy())
        f1 = f1_score(all_label, all_pred, average='macro')
        model.train()
        return f1  


class BOW(D.Layer):
    def __init__(self):
        super().__init__()
        self.emb = D.Embedding([len(student_vocab), 128], padding_idx=0)
        self.fc = D.Linear(128, 2)
    def forward(self, ids, labels=None):
        embbed = self.emb(ids)
        pad_mask = L.unsqueeze(L.cast(ids!=0, 'float32'), [-1])

        embbed = L.reduce_sum(embbed * pad_mask, 1)
        embbed = L.softsign(embbed)
        logits = self.fc(embbed)
        if labels is not None:
            if len(labels.shape)==1:
                labels = L.reshape(labels, [-1, 1])
            loss = L.softmax_with_cross_entropy(logits, labels)
            loss = L.reduce_mean(loss)
        else:
            loss = None
        return loss, logits

class CNN(D.Layer):
    def __init__(self):
        super().__init__()
        self.emb = D.Embedding([30002, 128], padding_idx=0)
        self.cnn = D.Conv2D(128, 128, (1, 3), padding=(0, 1), act='relu')
        self.pool = D.Pool2D((1, 3), pool_padding=(0, 1))
        self.fc = D.Linear(128, 2)
    def forward(self, ids, labels=None):
        embbed = self.emb(ids)
        #d_batch, d_seqlen = ids.shape
        hidden = embbed
        hidden = L.transpose(hidden, [0, 2, 1]) #change to NCWH
        hidden = L.unsqueeze(hidden, [2])
        hidden = self.cnn(hidden)
        hidden = self.pool(hidden)
        hidden = L.squeeze(hidden, [2])
        hidden = L.transpose(hidden, [0, 2, 1])
        pad_mask = L.unsqueeze(L.cast(ids!=0, 'float32'), [-1])
        hidden = L.softsign(L.reduce_sum(hidden * pad_mask, 1))
        logits = self.fc(hidden)
        if labels is not None:
            if len(labels.shape)==1:
                labels = L.reshape(labels, [-1, 1])
            loss = L.softmax_with_cross_entropy(logits, labels)
            loss = L.reduce_mean(loss)
        else:
            loss = None
        return loss, logits

def KL(pred, target):
    pred = L.log(L.softmax(pred))
    target = L.softmax(target)
    loss = L.kldiv_loss(pred, target)
    return loss
    
teacher_model.eval()
model = BOW()
opt = AdamW(learning_rate=LR, parameter_list=model.parameters(), weight_decay=0.01)
g_clip = F.dygraph_grad_clip.GradClipByGlobalNorm(1.0) #experimental
model.train()
for epoch in range(EPOCH):
    for step, (ids_student, ids, sids, _ ) in enumerate(train_ds.start(place)):
        _, logits_t = teacher_model(ids, sids) # teacher 模型输出logits
        logits_t.stop_gradient=True
        _, logits_s = model(ids_student) # student 模型输出logits
        loss = KL(logits_s, logits_t)    # 由KL divergence度量两个分布的距离
        loss.backward()
        if step % 10 == 0:
            print('[step %03d] 无监督 train loss %.5f lr %.3e' % (step, loss.numpy(), opt.current_step_lr()))
        opt.minimize(loss, grad_clip=g_clip)
        model.clear_gradients()
    f1 = evaluate_student(model, dev_ds)
    print('f1 %.5f' % f1)

    for step, (ids_student, ids, sids, label) in enumerate(train_ds.start(place)):
        loss, _ = model(ids_student, labels=label)
        loss.backward()
        if step % 10 == 0:
            print('[step %03d] 监督 train loss %.5f lr %.3e' % (step, loss.numpy(), opt.current_step_lr()))
        opt.minimize(loss, grad_clip=g_clip)
        model.clear_gradients()

    f1 = evaluate_student(model, dev_ds)
    print('f1 %.5f' % f1)