ernie.py 11.9 KB
Newer Older
D
dingsiyu 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301
#   Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Ernie Doc model."""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import json

import six
import paddle.fluid as fluid
import paddle.fluid.layers as layers
from model.static.transformer_encoder import encoder, pre_process_layer

class ErnieConfig(object):
    """ErnieConfig"""
    def __init__(self, config_path):
        self._config_dict = self._parse(config_path)

    def _parse(self, config_path):
        try:
            with open(config_path) as json_file:
                config_dict = json.load(json_file)
        except Exception:
            raise IOError("Error in parsing Ernie model config file '%s'" %
                          config_path)
        else:
            return config_dict

    def __getitem__(self, key):
        return self._config_dict[key]

    def print_config(self):
        for arg, value in sorted(six.iteritems(self._config_dict)):
            print('%s: %s' % (arg, value))
        print('------------------------------------------------')


class ErnieDocModel(object):
    def __init__(self,
                 src_ids,
                 position_ids,
                 task_ids,
                 input_mask,
                 config,
                 number_instance, 
                 weight_sharing=True,
                 rel_pos_params_sharing=False,
                 use_vars=False):
        """
        Fundamental pretrained Ernie Doc model
        """
        self._emb_size = config['hidden_size']
        self._n_layer = config['num_hidden_layers']
        self._n_head = config['num_attention_heads']
        self._voc_size = config['vocab_size']
        self._max_position_seq_len = config['max_position_embeddings']
        self._task_types = config['task_type_vocab_size']
        self._hidden_act = config['hidden_act']
        self._memory_len = config["memory_len"]
        self._epsilon = config["epsilon"]
        self._prepostprocess_dropout = config['hidden_dropout_prob']
        self._attention_dropout = config['attention_probs_dropout_prob']
        
        self._number_instance = number_instance
        self._weight_sharing = weight_sharing
        self._rel_pos_params_sharing = rel_pos_params_sharing
        
        self._word_emb_name = "word_embedding"
        self._pos_emb_name = "pos_embedding"
        self._task_emb_name = "task_embedding"
        self._emb_dtype = "float32"
        self._encoder_checkpints = []
        
        self._batch_size = layers.slice(layers.shape(src_ids), axes=[0], starts=[0], ends=[1])
        # Initialize all weigths by truncated normal initializer, and all biases
        # will be initialized by constant zero by default.
        self._param_initializer = fluid.initializer.TruncatedNormal(
            scale=config['initializer_range'])
        
        self._use_vars = use_vars
        self._init_memories()
        self._build_model(src_ids, position_ids, task_ids, input_mask)
    
    def _init_memories(self):
        """Initialize memories"""
        self.memories = []
        for i in range(self._n_layer):
            if self._memory_len:
                if self._use_vars:
                    self.memories.append(layers.create_global_var(
                            shape=[self._number_instance, self._memory_len, self._emb_size],
                            value=0.0,
                            dtype=self._emb_dtype,
                            persistable=True,
                            force_cpu=False,
                            name="memory_%d" % i))
                else:
                    self.memories.append(layers.data(
                        name="memory_%d" % i,
                        shape=[-1, self._memory_len, self._emb_size],
                        dtype=self._emb_dtype,
                        append_batch_size=False))
            else:
                self.memories.append([None])

    def _build_model(self, src_ids, position_ids, task_ids, input_mask):
        """Build Ernie Doc Model"""
        # padding id in vocabulary must be set to 0
        word_emb = layers.embedding(
            input=src_ids,
            size=[self._voc_size, self._emb_size],
            dtype=self._emb_dtype,
            param_attr=fluid.ParamAttr(
                name=self._word_emb_name, initializer=self._param_initializer),
            is_sparse=False)
        
        pos_emb = layers.embedding(
            input=position_ids,
            size=[self._max_position_seq_len * 2 + self._memory_len, self._emb_size],
            dtype=self._emb_dtype,
            param_attr=fluid.ParamAttr(
                name=self._pos_emb_name, initializer=self._param_initializer))  
         
        task_ids = layers.concat([
                layers.zeros(
                    shape=[self._batch_size, self._memory_len, 1], 
                    dtype="int64") + task_ids[0, 0, 0],
                task_ids], axis=1)
        task_ids.stop_gradient = True
        task_emb = layers.embedding(
            task_ids,
            size=[self._task_types, self._emb_size],
            dtype=self._emb_dtype,
            param_attr=fluid.ParamAttr(
                name=self._task_emb_name, initializer=self._param_initializer))
        
        word_emb = pre_process_layer(
            word_emb, 'nd', self._prepostprocess_dropout, name='pre_encoder_emb')
        pos_emb = pre_process_layer(
            pos_emb, 'nd', self._prepostprocess_dropout, name='pre_encoder_r_pos')
        task_emb = pre_process_layer(
            task_emb, 'nd', self._prepostprocess_dropout, name="pre_encoder_r_task")
 
        data_mask = layers.concat([
                layers.ones(
                    shape=[self._batch_size, self._memory_len, 1], 
                    dtype=input_mask.dtype),
                input_mask], axis=1) 
        data_mask.stop_gradient = True
        self_attn_mask = layers.matmul(
            x=input_mask, y=data_mask, transpose_y=True) 
        self_attn_mask = layers.scale(
            x=self_attn_mask, scale=1000000000.0, bias=-1.0, bias_after_scale=False)
        n_head_self_attn_mask = layers.stack(
            x=[self_attn_mask] * self._n_head, axis=1)
        n_head_self_attn_mask.stop_gradient = True
        
        self._enc_out, self._new_mems, self._checkpoints = encoder(
            enc_input=word_emb,
            memories=self.memories,
            rel_pos=pos_emb,
            rel_task=task_emb,
            attn_bias=n_head_self_attn_mask,
            n_layer=self._n_layer,
            n_head=self._n_head,
            d_key=self._emb_size // self._n_head,
            d_value=self._emb_size // self._n_head,
            d_model=self._emb_size,
            d_inner_hid=self._emb_size * 4,
            memory_len=self._memory_len,
            prepostprocess_dropout=self._prepostprocess_dropout,
            attention_dropout=self._attention_dropout,
            relu_dropout=0,
            hidden_act=self._hidden_act,
            epsilon=self._epsilon,
            preprocess_cmd="",
            postprocess_cmd="dan",
            param_initializer=self._param_initializer,
            rel_pos_params_sharing=self._rel_pos_params_sharing,
            name='encoder',
            use_vars=self._use_vars)

    def get_sequence_output(self):
        return self._enc_out

    def get_checkpoints(self):
        return self._checkpoints

    def get_mem_output(self):
        return self.memories, self._new_mems

    def get_pooled_output(self):
        """Get the last feature of each sequence for classification"""
        next_sent_feat = layers.slice(
            input=self._enc_out, axes=[1], starts=[-1], ends=[self._max_position_seq_len])
        next_sent_feat = layers.fc(
            input=next_sent_feat,
            size=self._emb_size,
            act="tanh",
            param_attr=fluid.ParamAttr(
                name="pooled_fc.w_0", initializer=self._param_initializer),
            bias_attr="pooled_fc.b_0")
        return next_sent_feat

    def get_pretrained_output(self, 
                              mask_label, 
                              mask_pos, 
                              need_cal_loss=True, 
                              reorder_labels=None, 
                              reorder_chose_idx=None, 
                              reorder_need_cal_loss=False):
        """Get the loss & accuracy for pretraining"""
        reshaped_emb_out = fluid.layers.reshape(
            x=self._enc_out, shape=[-1, self._emb_size])
        # extract masked tokens' feature
        mask_feat = layers.gather(input=reshaped_emb_out, 
            index=layers.cast(mask_pos, dtype="int32"))
    
        # transform: fc
        mask_trans_feat = layers.fc(
            input=mask_feat,
            size=self._emb_size,
            act=self._hidden_act,
            param_attr=fluid.ParamAttr(
                name='mask_lm_trans_fc.w_0',
                initializer=self._param_initializer),
            bias_attr=fluid.ParamAttr(name='mask_lm_trans_fc.b_0'))
        
        # transform: layer norm 
        mask_trans_feat = layers.layer_norm(
            mask_trans_feat,
            begin_norm_axis=len(mask_trans_feat.shape) - 1,
            param_attr=fluid.ParamAttr(
                name='mask_lm_trans_layer_norm_scale',
                initializer=fluid.initializer.Constant(1.)),
            bias_attr=fluid.ParamAttr(
                name='mask_lm_trans_layer_norm_bias',
                initializer=fluid.initializer.Constant(1.)))

        mask_lm_out_bias_attr = fluid.ParamAttr(
            name="mask_lm_out_fc.b_0",
            initializer=fluid.initializer.Constant(value=0.0))
        if self._weight_sharing:
            fc_out = layers.matmul(
                x=mask_trans_feat,
                y=fluid.default_main_program().global_block().var(
                    self._word_emb_name),
                transpose_y=True)
            fc_out += layers.create_parameter(
                shape=[self._voc_size],
                dtype=self._emb_dtype,
                attr=mask_lm_out_bias_attr,
                is_bias=True)
        else:
            fc_out = layers.fc(
                input=mask_trans_feat,
                size=self._voc_size,
                param_attr=fluid.ParamAttr(
                    name="mask_lm_out_fc.w_0",
                    initializer=self._param_initializer),
                bias_attr=mask_lm_out_bias_attr)

        mlm_loss = layers.softmax_with_cross_entropy(
            logits=fc_out, label=mask_label)
        mean_mlm_loss = layers.mean(mlm_loss) * need_cal_loss
        
        # extract the first token feature in each sentence
        self.next_sent_feat = self.get_pooled_output()
        next_sent_feat_filter = layers.gather(
            input=self.next_sent_feat, 
            index=reorder_chose_idx)
        reorder_fc_out = layers.fc(
            input=next_sent_feat_filter,
            size=33,
            param_attr=fluid.ParamAttr(
                name="multi_sent_sorted" + "_fc.w_0", initializer=self._param_initializer),
            bias_attr="multi_sent_sorted" + "_fc.b_0")
        reorder_loss, reorder_softmax = layers.softmax_with_cross_entropy(
            logits=reorder_fc_out, label=reorder_labels, return_softmax=True)
        reorder_acc = fluid.layers.accuracy(
            input=reorder_softmax, label=reorder_labels)
        mean_reorder_loss = fluid.layers.mean(reorder_loss) * reorder_need_cal_loss

        total_loss = mean_mlm_loss + mean_reorder_loss
        reorder_acc *= reorder_need_cal_loss

        return total_loss, mean_mlm_loss, reorder_acc