optimization.py 6.1 KB
Newer Older
D
dingsiyu 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156
#   Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Optimization and learning rate scheduling."""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import numpy as np
import paddle.fluid as fluid
from paddle.fluid.incubate.fleet.collective import fleet

def linear_warmup_decay(learning_rate, warmup_steps, num_train_steps):
    """ Applies linear warmup of learning rate from 0 and decay to 0."""
    with fluid.default_main_program()._lr_schedule_guard():
        lr = fluid.layers.tensor.create_global_var(
            shape=[1],
            value=0.0,
            dtype='float32',
            persistable=True,
            name="scheduled_learning_rate")

        global_step = fluid.layers.learning_rate_scheduler._decay_step_counter(
        )

        with fluid.layers.control_flow.Switch() as switch:
            with switch.case(global_step < warmup_steps):
                warmup_lr = learning_rate * (global_step / warmup_steps)
                fluid.layers.tensor.assign(warmup_lr, lr)
            with switch.default():
                decayed_lr = fluid.layers.learning_rate_scheduler.polynomial_decay(
                    learning_rate=learning_rate,
                    decay_steps=num_train_steps,
                    end_learning_rate=0.0,
                    power=1.0,
                    cycle=False)
                fluid.layers.tensor.assign(decayed_lr, lr)

        return lr

def exclude_from_weight_decay(name):
    """exclude_from_weight_decay"""
    if name.find("layer_norm") > -1:
        return True
    bias_suffix = ["_bias", "_b", ".b_0"]
    for suffix in bias_suffix:
        if name.endswith(suffix):
            return True
    return False

def layer_decay(param, param_last, learning_rate, decay_rate, n_layers):
    """layerwise learning rate decay"""
    delta = param - param_last
    if "encoder_layer" in param.name and param.name.index("encoder_layer")==0:
        print(param.name)
        layer = int(param.name.split("_")[2])
        ratio = decay_rate ** (n_layers + 1 - layer)
        ratio = decay_rate ** (n_layers - layer)
        param_update = param + (ratio - 1) * delta
    elif "embedding" in param.name:
        ratio = decay_rate ** (n_layers + 2)
        ratio = decay_rate ** (n_layers + 1)
        param_update = param + (ratio - 1) * delta
    else:
        param_update = None
    return param_update

def optimization(loss,
                 warmup_steps,
                 num_train_steps,
                 learning_rate,
                 train_program,
                 startup_prog,
                 weight_decay,
                 scheduler='linear_warmup_decay',
                 use_amp=False,
                 init_loss_scaling=32768,
                 layer_decay_rate=0,
                 n_layers=12,
                 dist_strategy=None):
    """optimization"""
    grad_clip = fluid.clip.GradientClipByGlobalNorm(clip_norm=1.0)
    if warmup_steps > 0:
        if scheduler == 'noam_decay':
            scheduled_lr = fluid.layers.learning_rate_scheduler\
             .noam_decay(1/(warmup_steps *(learning_rate ** 2)),
                         warmup_steps)
        elif scheduler == 'linear_warmup_decay':
            scheduled_lr = linear_warmup_decay(learning_rate, warmup_steps,
                                               num_train_steps)
        else:
            raise ValueError("Unkown learning rate scheduler, should be "
                             "'noam_decay' or 'linear_warmup_decay'")
        optimizer = fluid.optimizer.Adam(learning_rate=scheduled_lr)
    else:
        scheduled_lr = fluid.layers.create_global_var(
            name=fluid.unique_name.generate("learning_rate"),
            shape=[1],
            value=learning_rate,
            dtype='float32',
            persistable=True)
        optimizer = fluid.optimizer.Adam(learning_rate=scheduled_lr, epsilon=1e-06, grad_clip=grad_clip)    
        optimizer._learning_rate_map[fluid.default_main_program()] = scheduled_lr
     
    loss_scaling = fluid.layers.create_global_var(
        name=fluid.unique_name.generate("loss_scaling"),
        shape=[1],
        value=init_loss_scaling,
        dtype='float32',
        persistable=True)
    
    param_list = dict()
    for param in train_program.global_block().all_parameters():
        param_list[param.name] = param * 1.0
        param_list[param.name].stop_gradient = True

    if dist_strategy:
        optimizer = fleet.distributed_optimizer(optimizer, strategy=dist_strategy)

    loss = fluid.layers.mean(loss)
    _, param_grads = optimizer.minimize(loss)
    
    if use_amp:
        loss_scaling = optimizer._optimizer.get_loss_scaling()
    
    if layer_decay_rate > 0:
        for param, grad in param_grads:
            with param.block.program._optimized_guard(
                [param, grad]), fluid.framework.name_scope("layer_decay"):
                param_decay = layer_decay(param, param_list[param.name], \
                    scheduled_lr, layer_decay_rate, n_layers)
                if param_decay:
                    fluid.layers.assign(output=param, input=param_decay)

    if weight_decay > 0:
        for param, grad in param_grads:
            if exclude_from_weight_decay(param.name):
                continue
            with param.block.program._optimized_guard(
                [param, grad]), fluid.framework.name_scope("weight_decay"):
                updated_param = param - param_list[
                    param.name] * weight_decay * scheduled_lr
                fluid.layers.assign(output=param, input=updated_param)

    return scheduled_lr, loss_scaling