lanch.py 4.1 KB
Newer Older
D
dingsiyu 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117
import sys
import subprocess
import os
import six
import copy
import argparse

from utils.args import ArgumentGroup, print_arguments

# yapf: disable
parser = argparse.ArgumentParser(__doc__)
multip_g = ArgumentGroup(parser, "multiprocessing", 
        "start paddle training using multi-processing mode.")
multip_g.add_arg("node_ips", str, None, 
        "paddle trainer ips")
multip_g.add_arg("node_id", int, None, 
        "the trainer id of the node for multi-node distributed training.")
multip_g.add_arg("print_config", bool, True, 
        "print the config of multi-processing mode.")
multip_g.add_arg("current_node_ip", str, None, 
        "the ip of current node.")
multip_g.add_arg("split_log_path", str, "log",
        "log path for each trainer.")
multip_g.add_arg("nproc_per_node", int, 8, 
        "the number of process to use on each node.")
multip_g.add_arg("selected_gpus", str, "0,1,2,3,4,5,6,7", 
        "the gpus selected to use.")
multip_g.add_arg("training_script", str, None, "the program/script to be lauched "
        "in parallel followed by all the arguments", positional_arg=True)
multip_g.add_arg("training_script_args", str, None,
        "training script args", positional_arg=True, nargs=argparse.REMAINDER)
# yapf: enable


def start_procs(args):
    procs = []
    log_fns = []

    default_env = os.environ.copy()

    node_id = args.node_id
    node_ips = [x.strip() for x in args.node_ips.split(',')]
    current_ip = args.current_node_ip
    num_nodes = len(node_ips)
    selected_gpus = [x.strip() for x in args.selected_gpus.split(',')]
    selected_gpu_num = len(selected_gpus)

    all_trainer_endpoints = ""
    for ip in node_ips:
        for i in range(args.nproc_per_node):
            if all_trainer_endpoints != "":
                all_trainer_endpoints += ","
            all_trainer_endpoints += "%s:617%d" % (ip, i)

    nranks = num_nodes * args.nproc_per_node
    gpus_per_proc = args.nproc_per_node % selected_gpu_num 
    if gpus_per_proc == 0:
        gpus_per_proc =  selected_gpu_num // args.nproc_per_node
    else:
        gpus_per_proc =  selected_gpu_num // args.nproc_per_node + 1

    selected_gpus_per_proc = [selected_gpus[i:i + gpus_per_proc] for i in range(0, len(selected_gpus), gpus_per_proc)]

    if args.print_config:
        print("all_trainer_endpoints: ", all_trainer_endpoints, 
              ", node_id: ", node_id,
              ", current_ip: ", current_ip,
              ", num_nodes: ", num_nodes,
              ", node_ips: ", node_ips,
              ", gpus_per_proc: ", gpus_per_proc,
              ", selected_gpus_per_proc: ", selected_gpus_per_proc,
              ", nranks: ", nranks)

    current_env = copy.copy(default_env)
    procs = []
    log_fns = []
    for i in range(0, args.nproc_per_node):
        trainer_id = node_id * args.nproc_per_node + i
        current_env.update({
            "FLAGS_selected_gpus": "%s" % ",".join([str(s) for s in selected_gpus_per_proc[i]]),
            "PADDLE_TRAINER_ID" : "%d" % trainer_id,
            "PADDLE_CURRENT_ENDPOINT": "%s:617%d" % (current_ip, i),
            "PADDLE_TRAINERS_NUM": "%d" % nranks,
            "PADDLE_TRAINER_ENDPOINTS": all_trainer_endpoints,
            "PADDLE_NODES_NUM": "%d" % num_nodes
        })

        cmd = [sys.executable, "-u",
               args.training_script] + args.training_script_args
        if args.split_log_path:
            fn = open("%s/job.log.%d" % (args.split_log_path, trainer_id), "w")
            log_fns.append(fn)
            process = subprocess.Popen(cmd, env=current_env, stdout=fn, stderr=fn)
        else:
            process = subprocess.Popen(cmd, env=current_env)
        procs.append(process)

    for i in range(len(procs)):
        try:
            procs[i].communicate()
            procs[i].terminate()
            if len(log_fns) > 0:
                log_fns[i].close()
        except:
            raise subprocess.CalledProcessError(returncode=procs[i].returncode,
                                                cmd=procs[i].args)


def main(args):
    if args.print_config:
        print_arguments(args)
    start_procs(args)


if __name__ == "__main__":
    args = parser.parse_args()
    main(args)