mrc.py 9.4 KB
Newer Older
D
dingsiyu 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242
#   Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Model for MRC."""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import os
import time
import numpy as np
from collections import namedtuple

import paddle.fluid as fluid
from model.static.ernie import ErnieDocModel
from utils.metrics import EM_AND_F1 
from reader.tokenization import BasicTokenizer 
from utils.multi_process_eval import MultiProcessEvalForMrc

def create_model(args, ernie_config, mem_len=128, is_infer=False):
    """create model for mrc"""
    shapes = [[-1, args.max_seq_len, 1], [-1, 2 * args.max_seq_len + mem_len, 1], [-1, args.max_seq_len, 1],
            [-1, args.max_seq_len, 1], [-1, 1], [-1, 1], [-1, 1], [-1, 1], []]
    dtypes = ['int64', 'int64', 'int64', 'float32', 'int64', 'int64', 'int64', 'int64', 'int64']
    names = ["src_ids", "pos_ids", "task_ids", "input_mask", "start_positions", \
             "end_positions", "qids", "gather_idx", "need_cal_loss"]

    inputs = []
    for shape, dtype, name in zip(shapes, dtypes, names):
        inputs.append(fluid.layers.data(name=name, shape=shape, dtype=dtype, append_batch_size=False))

    src_ids, pos_ids, task_ids, input_mask, start_positions, \
            end_positions, qids, gather_idx, need_cal_loss = inputs
    pyreader = fluid.io.DataLoader.from_generator(
            feed_list=inputs,
            capacity=70, iterable=False)

    ernie_doc = ErnieDocModel(
        src_ids=src_ids,
        position_ids=pos_ids,
        task_ids=task_ids,
        input_mask=input_mask,
        config=ernie_config,
        number_instance=args.batch_size,
        rel_pos_params_sharing=args.rel_pos_params_sharing,
        use_vars=args.use_vars)

    enc_out = ernie_doc.get_sequence_output()
    checkpoints = ernie_doc.get_checkpoints()
    mems, new_mems = ernie_doc.get_mem_output()
    enc_out = fluid.layers.dropout(
        x=enc_out,
        dropout_prob=0.1,
        dropout_implementation="upscale_in_train")

    logits = fluid.layers.fc(
        input=enc_out,
        size=2,
        num_flatten_dims=2,
        param_attr=fluid.ParamAttr(
            name="cls_mrc_out_w",
            initializer=fluid.initializer.TruncatedNormal(scale=0.02)),
        bias_attr=fluid.ParamAttr(
            name="cls_mrc_out_b", initializer=fluid.initializer.Constant(0.)))
    
    if is_infer:
        probs = fluid.layers.softmax(logits)
        feed_targets_name = [
            src_ids.name, pos_ids.name, task_ids.name, input_mask.name
        ]
        return pyreader, probs, feed_targets_name

    logits = fluid.layers.transpose(x=logits, perm=[2, 0, 1])
    start_logits, end_logits = fluid.layers.unstack(x=logits, axis=0)

    filter_output = list(map(lambda x: fluid.layers.gather(x, gather_idx), \
                                    [qids, start_logits, end_logits, start_positions, end_positions])) 
    qids, start_logits, end_logits, start_positions, end_positions = filter_output

    def compute_loss(logits, positions):
        """compute loss"""
        loss = fluid.layers.softmax_with_cross_entropy(
            logits=logits, label=positions)
        loss = fluid.layers.mean(x=loss)
        return loss

    start_loss = compute_loss(start_logits, start_positions)
    end_loss = compute_loss(end_logits, end_positions)
    loss = (start_loss + end_loss) / 2.0
    loss *= need_cal_loss
    
    mems_vars = {'mems': mems, 'new_mems': new_mems}
    graph_vars = {
        "loss": loss,
        "qids": qids,
        "start_logits": start_logits,
        "end_logits": end_logits,
        "need_cal_loss": need_cal_loss
    }

    for k, v in graph_vars.items():
        v.persistable = True

    return pyreader, graph_vars, checkpoints, mems_vars

def evaluate(exe, 
             program,
             pyreader,
             graph_vars,
             mems_vars,
             tower_mems_np,  
             phase,
             steps=None,
             trainers_id=None,
             trainers_num=None,
             scheduled_lr=None,
             use_vars=False,
             examples=None,
             features=None,
             args=None):
    """evaluate interface"""
    fetch_names = [k for k, v in graph_vars.items()]
    fetch_list = [v for k, v in graph_vars.items()]
    if phase == "train":
        fetch_names += ['scheduled_lr']
        fetch_list += [scheduled_lr]
    
    if not use_vars:
        feed_dict = {}
        for m, m_np in zip(mems_vars['mems'], tower_mems_np):
            feed_dict[m.name] = m_np
        
        fetch_list += mems_vars['new_mems']
        fetch_names += [m.name for m in mems_vars['new_mems']]

    if phase == "train":
        if use_vars:
            outputs = exe.run(fetch_list=fetch_list, program=program, use_program_cache=True)
        else:
            outputs = exe.run(feed=feed_dict, fetch_list=fetch_list, program=program, use_program_cache=True)
            tower_mems_np = outputs[-len(mems_vars['new_mems']):]

        outputs_dict = {}
        for var_name, output_var in zip(fetch_names, outputs):
            outputs_dict[var_name] = output_var

        ret = {"loss": np.mean(outputs_dict['loss']),
               "learning_rate": np.mean(outputs_dict['scheduled_lr']),
               "tower_mems_np": tower_mems_np}
        return ret
    
    if phase == "eval" or phase == "test":
        output_dir = args.checkpoints
        if not os.path.exists(output_dir):
            os.makedirs(output_dir)
        output_prediction_file = os.path.join(output_dir, phase + "_predictions.json")
        output_nbest_file = os.path.join(output_dir, phase + "_nbest_predictions.json")

        RawResult = namedtuple("RawResult",
                ["unique_id", "start_logits", "end_logits"])

        pyreader.start()
        all_results = []
        time_begin = time.time()
        while True:
            try:
                if use_vars:
                    outputs = exe.run(
                        program=program, fetch_list=fetch_list, use_program_cache=True)
                else:
                    feed_dict = {}
                    for m, m_np in zip(mems_vars['mems'], tower_mems_np):
                        feed_dict[m.name] = m_np
                    outputs = exe.run(feed=feed_dict, fetch_list=fetch_list, program=program, use_program_cache=True)
                    tower_mems_np = outputs[-len(mems_vars['new_mems']):]
                    outputs = outputs[:-len(mems_vars['new_mems'])]
                np_loss, np_qids, np_start_logits, np_end_logits, np_need_cal_loss = outputs 

                if int(np_need_cal_loss) == 1:
                    for idx in range(np_qids.shape[0]):
                        if len(all_results) % 1000 == 0:
                            print("Processing example: %d" % len(all_results))
                        qid_each = int(np_qids[idx])
                        start_logits_each = [float(x) for x in np_start_logits[idx].flat]
                        end_logits_each = [float(x) for x in np_end_logits[idx].flat]
                        all_results.append(
                            RawResult(
                                unique_id=qid_each,
                                start_logits=start_logits_each,
                                end_logits=end_logits_each))
            except fluid.core.EOFException:
                pyreader.reset()
                break
        time_end = time.time()

        output_path = "./tmpout"
        tokenizer = BasicTokenizer(do_lower_case=args.do_lower_case)
        mul_pro_test = MultiProcessEvalForMrc(output_path, phase, trainers_num,
                                                  trainers_id, tokenizer)
        
        is_print = True
        if mul_pro_test.dev_count > 1:
            is_print = False
            mul_pro_test.write_result(all_results)
            if trainers_id == 0:
                is_print = True
                all_results = mul_pro_test.concat_result(RawResult)

        if is_print:
            mul_pro_test.write_predictions(examples,
                                           features,
                                           all_results,
                                           args.n_best_size,
                                           args.max_answer_length,
                                           args.do_lower_case,
                                           mul_pro_test.output_prediction_file,
                                           mul_pro_test.output_nbest_file)

            if phase == "eval":
                data_file = args.dev_set
            elif phase == "test":
                data_file = args.test_set
            
            elapsed_time = time_end - time_begin
            em_and_f1 = EM_AND_F1()
            em, f1, avg, total = em_and_f1.eval_file(data_file, mul_pro_test.output_prediction_file) 
            
            print("[%d_%s evaluation] em: %f, f1: %f, avg: %f, questions: %d, elapsed time: %f"
                % (steps, phase, em, f1, avg, total, elapsed_time))