cmrc2018_eval.py 4.5 KB
Newer Older
T
tianxin 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153
# -*- coding: utf-8 -*-
'''
Evaluation script for CMRC 2018
version: v5
Note: 
v5 formatted output, add usage description
v4 fixed segmentation issues
'''
from __future__ import print_function
from collections import Counter, OrderedDict
import string
import re
import argparse
import json
import sys
reload(sys)
sys.setdefaultencoding('utf8')
import nltk
import pdb


# split Chinese with English
def mixed_segmentation(in_str, rm_punc=False):
    in_str = str(in_str).decode('utf-8').lower().strip()
    segs_out = []
    temp_str = ""
    sp_char = [
        '-', ':', '_', '*', '^', '/', '\\', '~', '`', '+', '=', ',', '。', ':',
        '?', '!', '“', '”', ';', '’', '《', '》', '……', '·', '、', '「', '」', '(',
        ')', '-', '~', '『', '』'
    ]
    for char in in_str:
        if rm_punc and char in sp_char:
            continue
        if re.search(ur'[\u4e00-\u9fa5]', char) or char in sp_char:
            if temp_str != "":
                ss = nltk.word_tokenize(temp_str)
                segs_out.extend(ss)
                temp_str = ""
            segs_out.append(char)
        else:
            temp_str += char

    #handling last part
    if temp_str != "":
        ss = nltk.word_tokenize(temp_str)
        segs_out.extend(ss)

    return segs_out


# remove punctuation
def remove_punctuation(in_str):
    in_str = str(in_str).decode('utf-8').lower().strip()
    sp_char = [
        '-', ':', '_', '*', '^', '/', '\\', '~', '`', '+', '=', ',', '。', ':',
        '?', '!', '“', '”', ';', '’', '《', '》', '……', '·', '、', '「', '」', '(',
        ')', '-', '~', '『', '』'
    ]
    out_segs = []
    for char in in_str:
        if char in sp_char:
            continue
        else:
            out_segs.append(char)
    return ''.join(out_segs)


# find longest common string
def find_lcs(s1, s2):
    m = [[0 for i in range(len(s2) + 1)] for j in range(len(s1) + 1)]
    mmax = 0
    p = 0
    for i in range(len(s1)):
        for j in range(len(s2)):
            if s1[i] == s2[j]:
                m[i + 1][j + 1] = m[i][j] + 1
                if m[i + 1][j + 1] > mmax:
                    mmax = m[i + 1][j + 1]
                    p = i + 1
    return s1[p - mmax:p], mmax


#
def evaluate(ground_truth_file, prediction_file):
    f1 = 0
    em = 0
    total_count = 0
    skip_count = 0
    for instances in ground_truth_file["data"]:
        for instance in instances["paragraphs"]:
            context_text = instance['context'].strip()
            for qas in instance['qas']:
                total_count += 1
                query_id = qas['id'].strip()
                query_text = qas['question'].strip()
                answers = [ans["text"] for ans in qas["answers"]]

                if query_id not in prediction_file:
                    sys.stderr.write('Unanswered question: {}\n'.format(
                        query_id))
                    skip_count += 1
                    continue

                prediction = str(prediction_file[query_id])
                f1 += calc_f1_score(answers, prediction)
                em += calc_em_score(answers, prediction)

    f1_score = 100.0 * f1 / total_count
    em_score = 100.0 * em / total_count
    return f1_score, em_score, total_count, skip_count


def calc_f1_score(answers, prediction):
    f1_scores = []
    for ans in answers:
        ans_segs = mixed_segmentation(ans, rm_punc=True)
        prediction_segs = mixed_segmentation(prediction, rm_punc=True)
        lcs, lcs_len = find_lcs(ans_segs, prediction_segs)
        if lcs_len == 0:
            f1_scores.append(0)
            continue
        precision = 1.0 * lcs_len / len(prediction_segs)
        recall = 1.0 * lcs_len / len(ans_segs)
        f1 = (2 * precision * recall) / (precision + recall)
        f1_scores.append(f1)
    return max(f1_scores)


def calc_em_score(answers, prediction):
    em = 0
    for ans in answers:
        ans_ = remove_punctuation(ans)
        prediction_ = remove_punctuation(prediction)
        if ans_ == prediction_:
            em = 1
            break
    return em


def eval_file(dataset_file, prediction_file):
    ground_truth_file = json.load(open(dataset_file, 'rb'))
    prediction_file = json.load(open(prediction_file, 'rb'))
    F1, EM, TOTAL, SKIP = evaluate(ground_truth_file, prediction_file)
    AVG = (EM + F1) * 0.5
    return EM, F1, AVG, TOTAL


if __name__ == '__main__':
    EM, F1, AVG, TOTAL = eval_file(sys.argv[1], sys.argv[2])
    print(EM)
    print(F1)
    print(TOTAL)