run_sequence_labeling.py 11.1 KB
Newer Older
T
tianxin04 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
#   Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Finetuning on classification tasks."""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import os
import time
import multiprocessing

T
tianxin 已提交
24 25 26 27 28
# NOTE(paddle-dev): All of these flags should be
# set before `import paddle`. Otherwise, it would
# not take any effect.
os.environ['FLAGS_eager_delete_tensor_gb'] = '0'  # enable gc

T
tianxin04 已提交
29 30 31 32 33 34
import paddle.fluid as fluid

import reader.task_reader as task_reader
from model.ernie import ErnieConfig
from optimization import optimization
from utils.init import init_pretraining_params, init_checkpoint
T
tianxin 已提交
35
from utils.args import print_arguments, check_cuda
T
format  
tianxin04 已提交
36 37
from finetune.sequence_label import create_model, evaluate
from finetune_args import parser
T
tianxin04 已提交
38 39 40

args = parser.parse_args()

T
format  
tianxin04 已提交
41

T
tianxin04 已提交
42 43 44 45 46 47 48 49 50 51 52 53
def main(args):
    ernie_config = ErnieConfig(args.ernie_config_path)
    ernie_config.print_config()

    if args.use_cuda:
        place = fluid.CUDAPlace(int(os.getenv('FLAGS_selected_gpus', '0')))
        dev_count = fluid.core.get_cuda_device_count()
    else:
        place = fluid.CPUPlace()
        dev_count = int(os.environ.get('CPU_NUM', multiprocessing.cpu_count()))
    exe = fluid.Executor(place)

T
format  
tianxin04 已提交
54 55 56 57 58 59
    reader = task_reader.SequenceLabelReader(
        vocab_path=args.vocab_path,
        label_map_config=args.label_map_config,
        max_seq_len=args.max_seq_len,
        do_lower_case=args.do_lower_case,
        in_tokens=args.in_tokens,
T
tianxin 已提交
60 61
        random_seed=args.random_seed,
        task_id=args.task_id)
T
tianxin04 已提交
62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100

    if not (args.do_train or args.do_val or args.do_test):
        raise ValueError("For args `do_train`, `do_val` and `do_test`, at "
                         "least one of them must be True.")

    startup_prog = fluid.Program()
    if args.random_seed is not None:
        startup_prog.random_seed = args.random_seed

    if args.do_train:
        train_data_generator = reader.data_generator(
            input_file=args.train_set,
            batch_size=args.batch_size,
            epoch=args.epoch,
            shuffle=True,
            phase="train")

        num_train_examples = reader.get_num_examples(args.train_set)

        if args.in_tokens:
            max_train_steps = args.epoch * num_train_examples // (
                args.batch_size // args.max_seq_len) // dev_count
        else:
            max_train_steps = args.epoch * num_train_examples // args.batch_size // dev_count

        warmup_steps = int(max_train_steps * args.warmup_proportion)
        print("Device count: %d" % dev_count)
        print("Num train examples: %d" % num_train_examples)
        print("Max train steps: %d" % max_train_steps)
        print("Num warmup steps: %d" % warmup_steps)

        train_program = fluid.Program()

        with fluid.program_guard(train_program, startup_prog):
            with fluid.unique_name.guard():
                train_pyreader, graph_vars = create_model(
                    args,
                    pyreader_name='train_reader',
                    ernie_config=ernie_config)
T
tianxin 已提交
101
                scheduled_lr, loss_scaling = optimization(
T
tianxin04 已提交
102 103 104 105 106 107 108 109
                    loss=graph_vars["loss"],
                    warmup_steps=warmup_steps,
                    num_train_steps=max_train_steps,
                    learning_rate=args.learning_rate,
                    train_program=train_program,
                    startup_prog=startup_prog,
                    weight_decay=args.weight_decay,
                    scheduler=args.lr_scheduler,
T
tianxin 已提交
110
                    use_fp16=args.use_fp16)
T
tianxin04 已提交
111 112 113

                fluid.memory_optimize(
                    input_program=train_program,
T
format  
tianxin04 已提交
114 115 116
                    skip_opt_set=[
                        graph_vars["loss"].name, graph_vars["labels"].name,
                        graph_vars["infers"].name, graph_vars["seq_lens"].name
T
tianxin04 已提交
117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205
                    ])

        if args.verbose:
            if args.in_tokens:
                lower_mem, upper_mem, unit = fluid.contrib.memory_usage(
                    program=train_program,
                    batch_size=args.batch_size // args.max_seq_len)
            else:
                lower_mem, upper_mem, unit = fluid.contrib.memory_usage(
                    program=train_program, batch_size=args.batch_size)
            print("Theoretical memory usage in training: %.3f - %.3f %s" %
                  (lower_mem, upper_mem, unit))

    if args.do_val or args.do_test:
        test_prog = fluid.Program()
        with fluid.program_guard(test_prog, startup_prog):
            with fluid.unique_name.guard():
                test_pyreader, graph_vars = create_model(
                    args,
                    pyreader_name='test_reader',
                    ernie_config=ernie_config)

        test_prog = test_prog.clone(for_test=True)

    exe.run(startup_prog)

    if args.do_train:
        if args.init_checkpoint and args.init_pretraining_params:
            print(
                "WARNING: args 'init_checkpoint' and 'init_pretraining_params' "
                "both are set! Only arg 'init_checkpoint' is made valid.")
        if args.init_checkpoint:
            init_checkpoint(
                exe,
                args.init_checkpoint,
                main_program=startup_prog,
                use_fp16=args.use_fp16)
        elif args.init_pretraining_params:
            init_pretraining_params(
                exe,
                args.init_pretraining_params,
                main_program=startup_prog,
                use_fp16=args.use_fp16)
    elif args.do_val or args.do_test:
        if not args.init_checkpoint:
            raise ValueError("args 'init_checkpoint' should be set if"
                             "only doing validation or testing!")
        init_checkpoint(
            exe,
            args.init_checkpoint,
            main_program=startup_prog,
            use_fp16=args.use_fp16)

    if args.do_train:
        exec_strategy = fluid.ExecutionStrategy()
        if args.use_fast_executor:
            exec_strategy.use_experimental_executor = True
        exec_strategy.num_threads = dev_count
        exec_strategy.num_iteration_per_drop_scope = args.num_iteration_per_drop_scope

        train_exe = fluid.ParallelExecutor(
            use_cuda=args.use_cuda,
            loss_name=graph_vars["loss"].name,
            exec_strategy=exec_strategy,
            main_program=train_program)

        train_pyreader.decorate_tensor_provider(train_data_generator)
    else:
        train_exe = None

    if args.do_val or args.do_test:
        test_exe = fluid.ParallelExecutor(
            use_cuda=args.use_cuda,
            main_program=test_prog,
            share_vars_from=train_exe)

    if args.do_train:
        train_pyreader.start()
        steps = 0
        if warmup_steps > 0:
            graph_vars["learning_rate"] = scheduled_lr

        time_begin = time.time()
        while True:
            try:
                steps += 1
                if steps % args.skip_steps != 0:
                    train_exe.run(fetch_list=[])
                else:
T
format  
tianxin04 已提交
206 207 208
                    outputs = evaluate(train_exe, train_program, train_pyreader,
                                       graph_vars, args.num_labels, "train",
                                       dev_count)
T
tianxin04 已提交
209 210 211 212
                    if args.verbose:
                        verbose = "train pyreader queue size: %d, " % train_pyreader.queue.size(
                        )
                        verbose += "learning rate: %f" % (
T
format  
tianxin04 已提交
213 214
                            outputs["lr"]
                            if warmup_steps > 0 else args.learning_rate)
T
tianxin04 已提交
215 216
                        print(verbose)

T
format  
tianxin04 已提交
217
                    current_example, current_epoch = reader.get_train_progress()
T
tianxin04 已提交
218 219 220
                    time_end = time.time()
                    used_time = time_end - time_begin
                    print("epoch: %d, progress: %d/%d, step: %d, loss: %f, "
T
format  
tianxin04 已提交
221 222 223 224 225
                          "f1: %f, precision: %f, recall: %f, speed: %f steps/s"
                          % (current_epoch, current_example, num_train_examples,
                             steps, outputs["loss"], outputs["f1"],
                             outputs["precision"], outputs["recall"],
                             args.skip_steps / used_time))
T
tianxin04 已提交
226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241
                    time_begin = time.time()

                if steps % args.save_steps == 0:
                    save_path = os.path.join(args.checkpoints,
                                             "step_" + str(steps))
                    fluid.io.save_persistables(exe, save_path, train_program)

                if steps % args.validation_steps == 0:
                    # evaluate dev set
                    if args.do_val:
                        test_pyreader.decorate_tensor_provider(
                            reader.data_generator(
                                args.dev_set,
                                batch_size=args.batch_size,
                                epoch=1,
                                shuffle=False))
T
format  
tianxin04 已提交
242 243
                        evaluate(exe, test_prog, test_pyreader, graph_vars,
                                 args.num_labels, "dev")
T
tianxin04 已提交
244 245 246 247 248 249 250 251
                    # evaluate test set
                    if args.do_test:
                        test_pyreader.decorate_tensor_provider(
                            reader.data_generator(
                                args.test_set,
                                batch_size=args.batch_size,
                                epoch=1,
                                shuffle=False))
T
format  
tianxin04 已提交
252 253
                        evaluate(exe, test_prog, test_pyreader, graph_vars,
                                 args.num_labels, "test")
T
tianxin04 已提交
254 255 256 257 258 259 260 261 262 263 264

            except fluid.core.EOFException:
                save_path = os.path.join(args.checkpoints, "step_" + str(steps))
                fluid.io.save_persistables(exe, save_path, train_program)
                train_pyreader.reset()
                break

    # final eval on dev set
    if args.do_val:
        test_pyreader.decorate_tensor_provider(
            reader.data_generator(
T
format  
tianxin04 已提交
265 266 267
                args.dev_set,
                batch_size=args.batch_size,
                epoch=1,
T
tianxin04 已提交
268 269
                shuffle=False))
        print("Final validation result:")
270 271
        evaluate(exe, test_prog, test_pyreader, graph_vars, args.num_labels,
                 "dev")
T
tianxin04 已提交
272 273 274 275 276 277 278 279 280 281

    # final eval on test set
    if args.do_test:
        test_pyreader.decorate_tensor_provider(
            reader.data_generator(
                args.test_set,
                batch_size=args.batch_size,
                epoch=1,
                shuffle=False))
        print("Final test result:")
282 283
        evaluate(exe, test_prog, test_pyreader, graph_vars, args.num_labels,
                 "test")
T
tianxin04 已提交
284 285 286 287


if __name__ == '__main__':
    print_arguments(args)
T
tianxin 已提交
288
    check_cuda(args.use_cuda)
T
tianxin04 已提交
289
    main(args)