pretraining.py 11.7 KB
Newer Older
T
tianxin04 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
#   Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function
from __future__ import division

import os
import numpy as np
import types
import gzip
import logging
import re
import six
import collections
import tokenization

import paddle
import paddle.fluid as fluid

from batching import prepare_batch_data

T
format  
tianxin04 已提交
33

T
tianxin04 已提交
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77
class ErnieDataReader(object):
    def __init__(self,
                 filelist,
                 vocab_path,
                 batch_size=4096,
                 max_seq_len=512,
                 shuffle_files=True,
                 epoch=100,
                 voc_size=0,
                 is_test=False,
                 generate_neg_sample=False):

        self.vocab = self.load_vocab(vocab_path)
        self.filelist = filelist
        self.batch_size = batch_size
        self.shuffle_files = shuffle_files
        self.epoch = epoch
        self.current_epoch = 0
        self.current_file_index = 0
        self.total_file = 0
        self.current_file = None
        self.voc_size = voc_size
        self.max_seq_len = max_seq_len
        self.pad_id = self.vocab["[PAD]"]
        self.cls_id = self.vocab["[CLS]"]
        self.sep_id = self.vocab["[SEP]"]
        self.mask_id = self.vocab["[MASK]"]
        self.is_test = is_test
        self.generate_neg_sample = generate_neg_sample
        assert self.batch_size > 100, "Current batch size means total token's number, \
                                       it should not be set to too small number."

        if self.is_test:
            self.epoch = 1
            self.shuffle_files = False

    def get_progress(self):
        """return current progress of traning data
        """
        return self.current_epoch, self.current_file_index, self.total_file, self.current_file, self.mask_type

    def parse_line(self, line, max_seq_len=512):
        """ parse one line to token_ids, sentence_ids, pos_ids, label
        """
X
xiegegege 已提交
78
        line = line.strip().decode().split(";")
T
tianxin04 已提交
79 80 81 82 83 84
        assert len(line) == 5, "One sample must have 5 fields!"
        (token_ids, sent_ids, pos_ids, seg_labels, label) = line
        token_ids = [int(token) for token in token_ids.split(" ")]
        sent_ids = [int(token) for token in sent_ids.split(" ")]
        pos_ids = [int(token) for token in pos_ids.split(" ")]
        seg_labels = [int(seg_label) for seg_label in seg_labels.split(" ")]
T
format  
tianxin04 已提交
85 86
        assert len(token_ids) == len(sent_ids) == len(pos_ids) == len(
            seg_labels
T
tianxin04 已提交
87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156
        ), "[Must be true]len(token_ids) == len(sent_ids) == len(pos_ids) == len(seg_labels)"
        label = int(label)
        if len(token_ids) > max_seq_len:
            return None
        return [token_ids, sent_ids, pos_ids, label, seg_labels]

    def read_file(self, file):
        assert file.endswith('.gz'), "[ERROR] %s is not a gzip file" % file
        with gzip.open(file, "rb") as f:
            for line in f:
                parsed_line = self.parse_line(
                    line, max_seq_len=self.max_seq_len)
                if parsed_line is None:
                    continue
                yield parsed_line

    def convert_to_unicode(self, text):
        """Converts `text` to Unicode (if it's not already), assuming utf-8 input."""
        if six.PY3:
            if isinstance(text, str):
                return text
            elif isinstance(text, bytes):
                return text.decode("utf-8", "ignore")
            else:
                raise ValueError("Unsupported string type: %s" % (type(text)))
        elif six.PY2:
            if isinstance(text, str):
                return text.decode("utf-8", "ignore")
            elif isinstance(text, unicode):
                return text
            else:
                raise ValueError("Unsupported string type: %s" % (type(text)))
        else:
            raise ValueError("Not running on Python2 or Python 3?")

    def load_vocab(self, vocab_file):
        """Loads a vocabulary file into a dictionary."""
        vocab = collections.OrderedDict()
        fin = open(vocab_file)
        for num, line in enumerate(fin):
            items = self.convert_to_unicode(line.strip()).split("\t")
            if len(items) > 2:
                break
            token = items[0]
            index = items[1] if len(items) == 2 else num
            token = token.strip()
            vocab[token] = int(index)
        return vocab

    def random_pair_neg_samples(self, pos_samples):
        """ randomly generate negtive samples using pos_samples

            Args:
                pos_samples: list of positive samples
            
            Returns:
                neg_samples: list of negtive samples
        """
        np.random.shuffle(pos_samples)
        num_sample = len(pos_samples)
        neg_samples = []
        miss_num = 0

        def split_sent(sample, max_len, sep_id):
            token_seq, type_seq, pos_seq, label, seg_labels = sample
            sep_index = token_seq.index(sep_id)
            left_len = sep_index - 1
            if left_len <= max_len:
                return (token_seq[1:sep_index], seg_labels[1:sep_index])
            else:
T
format  
tianxin04 已提交
157 158 159
                return [
                    token_seq[sep_index + 1:-1], seg_labels[sep_index + 1:-1]
                ]
T
tianxin04 已提交
160 161 162

        for i in range(num_sample):
            pair_index = (i + 1) % num_sample
T
format  
tianxin04 已提交
163 164 165 166 167
            left_tokens, left_seg_labels = split_sent(
                pos_samples[i], (self.max_seq_len - 3) // 2, self.sep_id)
            right_tokens, right_seg_labels = split_sent(
                pos_samples[pair_index],
                self.max_seq_len - 3 - len(left_tokens), self.sep_id)
T
tianxin04 已提交
168 169 170 171 172 173

            token_seq = [self.cls_id] + left_tokens + [self.sep_id] + \
                    right_tokens + [self.sep_id]
            if len(token_seq) > self.max_seq_len:
                miss_num += 1
                continue
Y
Yibing Liu 已提交
174 175
            type_seq = [0] * (len(left_tokens) + 2) + [1] * (len(right_tokens) +
                                                             1)
T
tianxin04 已提交
176
            pos_seq = range(len(token_seq))
Y
Yibing Liu 已提交
177 178 179
            seg_label_seq = [-1] + left_seg_labels + [-1] + right_seg_labels + [
                -1
            ]
T
tianxin04 已提交
180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295

            assert len(token_seq) == len(type_seq) == len(pos_seq) == len(seg_label_seq), \
                    "[ERROR]len(src_id) == lne(sent_id) == len(pos_id) must be True"
            neg_samples.append([token_seq, type_seq, pos_seq, 0, seg_label_seq])

        return neg_samples, miss_num

    def mixin_negtive_samples(self, pos_sample_generator, buffer=1000):
        """ 1. generate negtive samples by randomly group sentence_1 and sentence_2 of positive samples
            2. combine negtive samples and positive samples
            
            Args:
                pos_sample_generator: a generator producing a parsed positive sample, which is a list: [token_ids, sent_ids, pos_ids, 1]

            Returns:
                sample: one sample from shuffled positive samples and negtive samples
        """
        pos_samples = []
        num_total_miss = 0
        pos_sample_num = 0
        try:
            while True:
                while len(pos_samples) < buffer:
                    pos_sample = next(pos_sample_generator)
                    label = pos_sample[3]
                    assert label == 1, "positive sample's label must be 1"
                    pos_samples.append(pos_sample)
                    pos_sample_num += 1

                neg_samples, miss_num = self.random_pair_neg_samples(
                    pos_samples)
                num_total_miss += miss_num
                samples = pos_samples + neg_samples
                pos_samples = []
                np.random.shuffle(samples)
                for sample in samples:
                    yield sample
        except StopIteration:
            print("stopiteration: reach end of file")
            if len(pos_samples) == 1:
                yield pos_samples[0]
            elif len(pos_samples) == 0:
                yield None
            else:
                neg_samples, miss_num = self.random_pair_neg_samples(
                    pos_samples)
                num_total_miss += miss_num
                samples = pos_samples + neg_samples
                pos_samples = []
                np.random.shuffle(samples)
                for sample in samples:
                    yield sample
            print("miss_num:%d\tideal_total_sample_num:%d\tmiss_rate:%f" %
                  (num_total_miss, pos_sample_num * 2,
                   num_total_miss / (pos_sample_num * 2)))

    def data_generator(self):
        """
        data_generator
        """
        files = open(self.filelist).readlines()
        self.total_file = len(files)
        assert self.total_file > 0, "[Error] data_dir is empty"

        def wrapper():
            def reader():
                for epoch in range(self.epoch):
                    self.current_epoch = epoch + 1
                    if self.shuffle_files:
                        np.random.shuffle(files)
                    for index, file in enumerate(files):
                        file, mask_word_prob = file.strip().split("\t")
                        mask_word = (np.random.random() < float(mask_word_prob))
                        self.current_file_index = index + 1
                        self.current_file = file
                        if mask_word:
                            self.mask_type = "mask_word"
                        else:
                            self.mask_type = "mask_char"

                        sample_generator = self.read_file(file)
                        if not self.is_test and self.generate_neg_sample:
                            sample_generator = self.mixin_negtive_samples(
                                sample_generator)
                        for sample in sample_generator:
                            if sample is None:
                                continue
                            sample.append(mask_word)
                            yield sample

            def batch_reader(reader, batch_size):
                batch, total_token_num, max_len = [], 0, 0
                for parsed_line in reader():
                    token_ids, sent_ids, pos_ids, label, seg_labels, mask_word = parsed_line
                    max_len = max(max_len, len(token_ids))
                    if (len(batch) + 1) * max_len <= batch_size:
                        batch.append(parsed_line)
                        total_token_num += len(token_ids)
                    else:
                        yield batch, total_token_num
                        batch, total_token_num, max_len = [parsed_line], len(
                            token_ids), len(token_ids)

                if len(batch) > 0:
                    yield batch, total_token_num

            for batch_data, total_token_num in batch_reader(reader,
                                                            self.batch_size):
                yield prepare_batch_data(
                    batch_data,
                    total_token_num,
                    voc_size=self.voc_size,
                    pad_id=self.pad_id,
                    cls_id=self.cls_id,
                    sep_id=self.sep_id,
                    mask_id=self.mask_id,
Y
Yibing Liu 已提交
296
                    return_input_mask=True,
T
tianxin04 已提交
297 298 299 300 301 302 303 304
                    return_max_len=False,
                    return_num_token=False)

        return wrapper


if __name__ == "__main__":
    pass