run_mrc.py 13.6 KB
Newer Older
T
tianxin04 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
#   Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Finetuning on classification tasks."""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
C
chenxuyi 已提交
19
from __future__ import unicode_literals
T
tianxin04 已提交
20 21 22

import os
import time
C
chenxuyi 已提交
23
import logging
T
tianxin04 已提交
24 25
import multiprocessing

T
tianxin 已提交
26 27 28 29 30
# NOTE(paddle-dev): All of these flags should be
# set before `import paddle`. Otherwise, it would
# not take any effect.
os.environ['FLAGS_eager_delete_tensor_gb'] = '0'  # enable gc

T
tianxin04 已提交
31 32 33 34
import paddle.fluid as fluid

import reader.task_reader as task_reader
from model.ernie import ErnieConfig
T
tianxin 已提交
35
from finetune.mrc import create_model, evaluate
T
tianxin04 已提交
36
from optimization import optimization
C
chenxuyi 已提交
37
from utils.args import print_arguments, prepare_logger
T
tianxin04 已提交
38
from utils.init import init_pretraining_params, init_checkpoint
T
format  
tianxin04 已提交
39
from finetune_args import parser
T
tianxin04 已提交
40 41

args = parser.parse_args()
C
chenxuyi 已提交
42
log = logging.getLogger()
T
tianxin04 已提交
43

T
format  
tianxin04 已提交
44

T
tianxin04 已提交
45 46 47 48 49
def main(args):
    ernie_config = ErnieConfig(args.ernie_config_path)
    ernie_config.print_config()

    if args.use_cuda:
C
chenxuyi 已提交
50 51 52
        dev_list = fluid.cuda_places()
        place = dev_list[0]
        dev_count = len(dev_list)
T
tianxin04 已提交
53 54 55 56 57
    else:
        place = fluid.CPUPlace()
        dev_count = int(os.environ.get('CPU_NUM', multiprocessing.cpu_count()))
    exe = fluid.Executor(place)

T
tianxin 已提交
58
    reader = task_reader.MRCReader(
T
format  
tianxin04 已提交
59 60 61 62 63
        vocab_path=args.vocab_path,
        label_map_config=args.label_map_config,
        max_seq_len=args.max_seq_len,
        do_lower_case=args.do_lower_case,
        in_tokens=args.in_tokens,
T
tianxin 已提交
64 65 66 67 68 69 70 71
        random_seed=args.random_seed,
        tokenizer=args.tokenizer,
        is_classify=args.is_classify,
        is_regression=args.is_regression,
        for_cn=args.for_cn,
        task_id=args.task_id,
        doc_stride=args.doc_stride,
        max_query_length=args.max_query_length)
T
tianxin04 已提交
72 73 74 75 76

    if not (args.do_train or args.do_val or args.do_test):
        raise ValueError("For args `do_train`, `do_val` and `do_test`, at "
                         "least one of them must be True.")

C
chenxuyi 已提交
77 78
    if args.do_test:
        assert args.test_save is not None
T
tianxin04 已提交
79 80 81 82
    startup_prog = fluid.Program()
    if args.random_seed is not None:
        startup_prog.random_seed = args.random_seed

T
tianxin 已提交
83 84
    if args.predict_batch_size == None:
        args.predict_batch_size = args.batch_size
T
tianxin04 已提交
85
    if args.do_train:
C
chenxuyi 已提交
86
        trainers_num = int(os.getenv("PADDLE_TRAINERS_NUM", "1"))
T
tianxin04 已提交
87 88 89 90
        train_data_generator = reader.data_generator(
            input_file=args.train_set,
            batch_size=args.batch_size,
            epoch=args.epoch,
C
chenxuyi 已提交
91
            dev_count=trainers_num,
T
tianxin 已提交
92
            shuffle=True,
T
tianxin04 已提交
93 94
            phase="train")

T
tianxin 已提交
95
        num_train_examples = reader.get_num_examples("train")
T
tianxin04 已提交
96 97 98 99 100 101 102 103

        if args.in_tokens:
            max_train_steps = args.epoch * num_train_examples // (
                args.batch_size // args.max_seq_len) // dev_count
        else:
            max_train_steps = args.epoch * num_train_examples // args.batch_size // dev_count

        warmup_steps = int(max_train_steps * args.warmup_proportion)
C
chenxuyi 已提交
104 105 106 107
        log.info("Device count: %d" % dev_count)
        log.info("Num train examples: %d" % num_train_examples)
        log.info("Max train steps: %d" % max_train_steps)
        log.info("Num warmup steps: %d" % warmup_steps)
T
tianxin04 已提交
108 109 110 111 112 113 114 115

        train_program = fluid.Program()

        with fluid.program_guard(train_program, startup_prog):
            with fluid.unique_name.guard():
                train_pyreader, graph_vars = create_model(
                    args,
                    pyreader_name='train_reader',
T
tianxin 已提交
116 117
                    ernie_config=ernie_config,
                    is_training=True)
C
chenxuyi 已提交
118
                scheduled_lr, _ = optimization(
T
tianxin04 已提交
119 120 121 122 123 124 125 126
                    loss=graph_vars["loss"],
                    warmup_steps=warmup_steps,
                    num_train_steps=max_train_steps,
                    learning_rate=args.learning_rate,
                    train_program=train_program,
                    startup_prog=startup_prog,
                    weight_decay=args.weight_decay,
                    scheduler=args.lr_scheduler,
C
chenxuyi 已提交
127 128 129 130 131 132 133
		    use_fp16=args.use_fp16,
		    use_dynamic_loss_scaling=args.use_dynamic_loss_scaling,
		    init_loss_scaling=args.init_loss_scaling,
		    incr_every_n_steps=args.incr_every_n_steps,
		    decr_every_n_nan_or_inf=args.decr_every_n_nan_or_inf,
		    incr_ratio=args.incr_ratio,
		    decr_ratio=args.decr_ratio)
T
tianxin04 已提交
134 135 136 137 138 139 140 141 142

        if args.verbose:
            if args.in_tokens:
                lower_mem, upper_mem, unit = fluid.contrib.memory_usage(
                    program=train_program,
                    batch_size=args.batch_size // args.max_seq_len)
            else:
                lower_mem, upper_mem, unit = fluid.contrib.memory_usage(
                    program=train_program, batch_size=args.batch_size)
C
chenxuyi 已提交
143
            log.info("Theoretical memory usage in training: %.3f - %.3f %s" %
T
tianxin04 已提交
144 145 146 147 148 149
                  (lower_mem, upper_mem, unit))

    if args.do_val or args.do_test:
        test_prog = fluid.Program()
        with fluid.program_guard(test_prog, startup_prog):
            with fluid.unique_name.guard():
T
tianxin 已提交
150
                test_pyreader, test_graph_vars = create_model(
T
tianxin04 已提交
151 152
                    args,
                    pyreader_name='test_reader',
T
tianxin 已提交
153 154
                    ernie_config=ernie_config,
                    is_training=False)
T
tianxin04 已提交
155 156 157

        test_prog = test_prog.clone(for_test=True)

T
tianxin 已提交
158 159
    nccl2_num_trainers = 1
    nccl2_trainer_id = 0
C
chenxuyi 已提交
160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184
    if args.is_distributed:
        trainer_id = int(os.getenv("PADDLE_TRAINER_ID", "0"))
        worker_endpoints_env = os.getenv("PADDLE_TRAINER_ENDPOINTS")
        current_endpoint = os.getenv("PADDLE_CURRENT_ENDPOINT")
        worker_endpoints = worker_endpoints_env.split(",")
        trainers_num = len(worker_endpoints)
        
        log.info("worker_endpoints:{} trainers_num:{} current_endpoint:{} \
              trainer_id:{}".format(worker_endpoints, trainers_num,
                                    current_endpoint, trainer_id))

        # prepare nccl2 env.
        config = fluid.DistributeTranspilerConfig()
        config.mode = "nccl2"
        t = fluid.DistributeTranspiler(config=config)
        t.transpile(
            trainer_id,
            trainers=worker_endpoints_env,
            current_endpoint=current_endpoint,
            program=train_program if args.do_train else test_prog,
            startup_program=startup_prog)
        nccl2_num_trainers = trainers_num
        nccl2_trainer_id = trainer_id

    exe = fluid.Executor(place)
T
tianxin04 已提交
185 186 187 188
    exe.run(startup_prog)

    if args.do_train:
        if args.init_checkpoint and args.init_pretraining_params:
C
chenxuyi 已提交
189
            log.warning(
T
tianxin04 已提交
190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224
                "WARNING: args 'init_checkpoint' and 'init_pretraining_params' "
                "both are set! Only arg 'init_checkpoint' is made valid.")
        if args.init_checkpoint:
            init_checkpoint(
                exe,
                args.init_checkpoint,
                main_program=startup_prog,
                use_fp16=args.use_fp16)
        elif args.init_pretraining_params:
            init_pretraining_params(
                exe,
                args.init_pretraining_params,
                main_program=startup_prog,
                use_fp16=args.use_fp16)
    elif args.do_val or args.do_test:
        if not args.init_checkpoint:
            raise ValueError("args 'init_checkpoint' should be set if"
                             "only doing validation or testing!")
        init_checkpoint(
            exe,
            args.init_checkpoint,
            main_program=startup_prog,
            use_fp16=args.use_fp16)

    if args.do_train:
        exec_strategy = fluid.ExecutionStrategy()
        if args.use_fast_executor:
            exec_strategy.use_experimental_executor = True
        exec_strategy.num_threads = dev_count
        exec_strategy.num_iteration_per_drop_scope = args.num_iteration_per_drop_scope

        train_exe = fluid.ParallelExecutor(
            use_cuda=args.use_cuda,
            loss_name=graph_vars["loss"].name,
            exec_strategy=exec_strategy,
T
tianxin 已提交
225 226 227
            main_program=train_program,
            num_trainers=nccl2_num_trainers,
            trainer_id=nccl2_trainer_id)
T
tianxin04 已提交
228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245

        train_pyreader.decorate_tensor_provider(train_data_generator)
    else:
        train_exe = None

    if args.do_train:
        train_pyreader.start()
        steps = 0
        if warmup_steps > 0:
            graph_vars["learning_rate"] = scheduled_lr

        time_begin = time.time()
        while True:
            try:
                steps += 1
                if steps % args.skip_steps != 0:
                    train_exe.run(fetch_list=[])
                else:
T
format  
tianxin04 已提交
246 247
                    outputs = evaluate(train_exe, train_program, train_pyreader,
                                       graph_vars, "train")
T
tianxin04 已提交
248 249 250 251 252 253 254

                    if args.verbose:
                        verbose = "train pyreader queue size: %d, " % train_pyreader.queue.size(
                        )
                        verbose += "learning rate: %f" % (
                            outputs["learning_rate"]
                            if warmup_steps > 0 else args.learning_rate)
C
chenxuyi 已提交
255
                        log.info(verbose)
T
tianxin04 已提交
256 257 258 259

                    current_example, current_epoch = reader.get_train_progress()
                    time_end = time.time()
                    used_time = time_end - time_begin
C
chenxuyi 已提交
260
                    log.info("epoch: %d, progress: %d/%d, step: %d, ave loss: %f, "
T
tianxin 已提交
261
                          "speed: %f steps/s" %
T
tianxin04 已提交
262
                          (current_epoch, current_example, num_train_examples,
T
tianxin 已提交
263
                           steps, outputs["loss"], args.skip_steps / used_time))
T
tianxin04 已提交
264 265 266 267 268 269 270 271 272 273 274 275 276 277
                    time_begin = time.time()

                if steps % args.save_steps == 0:
                    save_path = os.path.join(args.checkpoints,
                                             "step_" + str(steps))
                    fluid.io.save_persistables(exe, save_path, train_program)

                if steps % args.validation_steps == 0:
                    if args.do_val:
                        test_pyreader.decorate_tensor_provider(
                            reader.data_generator(
                                args.dev_set,
                                batch_size=args.batch_size,
                                epoch=1,
T
tianxin 已提交
278 279 280 281 282 283 284 285 286 287 288 289 290
                                dev_count=1,
                                shuffle=False,
                                phase="dev"))
                        evaluate(
                            exe,
                            test_prog,
                            test_pyreader,
                            test_graph_vars,
                            str(steps) + "_dev",
                            examples=reader.get_examples("dev"),
                            features=reader.get_features("dev"),
                            args=args)

T
tianxin04 已提交
291 292 293 294 295 296
                    if args.do_test:
                        test_pyreader.decorate_tensor_provider(
                            reader.data_generator(
                                args.test_set,
                                batch_size=args.batch_size,
                                epoch=1,
T
tianxin 已提交
297 298 299 300 301 302 303 304 305 306 307 308 309
                                dev_count=1,
                                shuffle=False,
                                phase="test"))
                        evaluate(
                            exe,
                            test_prog,
                            test_pyreader,
                            test_graph_vars,
                            str(steps) + "_test",
                            examples=reader.get_examples("test"),
                            features=reader.get_features("test"),
                            args=args)

T
tianxin04 已提交
310 311 312 313 314 315 316 317
            except fluid.core.EOFException:
                save_path = os.path.join(args.checkpoints, "step_" + str(steps))
                fluid.io.save_persistables(exe, save_path, train_program)
                train_pyreader.reset()
                break

    # final eval on dev set
    if args.do_val:
C
chenxuyi 已提交
318
        log.info("Final validation result:")
T
tianxin04 已提交
319 320
        test_pyreader.decorate_tensor_provider(
            reader.data_generator(
T
format  
tianxin04 已提交
321 322 323
                args.dev_set,
                batch_size=args.batch_size,
                epoch=1,
T
tianxin 已提交
324 325 326 327 328 329 330 331 332 333 334 335
                dev_count=1,
                shuffle=False,
                phase="dev"))
        evaluate(
            exe,
            test_prog,
            test_pyreader,
            test_graph_vars,
            "dev",
            examples=reader.get_examples("dev"),
            features=reader.get_features("dev"),
            args=args)
T
tianxin04 已提交
336 337 338

    # final eval on test set
    if args.do_test:
C
chenxuyi 已提交
339
        log.info("Final test result:")
T
tianxin04 已提交
340 341 342 343 344
        test_pyreader.decorate_tensor_provider(
            reader.data_generator(
                args.test_set,
                batch_size=args.batch_size,
                epoch=1,
T
tianxin 已提交
345 346 347 348 349 350 351 352 353 354 355 356
                dev_count=1,
                shuffle=False,
                phase="test"))
        evaluate(
            exe,
            test_prog,
            test_pyreader,
            test_graph_vars,
            "test",
            examples=reader.get_examples("test"),
            features=reader.get_features("test"),
            args=args)
T
tianxin04 已提交
357 358 359


if __name__ == '__main__':
C
chenxuyi 已提交
360 361
    prepare_logger(log)
    print_arguments(args)
T
tianxin 已提交
362 363 364 365
    while True:
        scope = fluid.core.Scope()
        with fluid.scope_guard(scope):
            main(args)