run_classifier.py 16.7 KB
Newer Older
T
tianxin04 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
#   Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Finetuning on classification tasks."""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
C
chenxuyi 已提交
19 20
from __future__ import unicode_literals
from __future__ import absolute_import
T
tianxin04 已提交
21 22 23

import os
import time
C
chenxuyi 已提交
24
import logging
T
tianxin04 已提交
25 26
import multiprocessing

T
tianxin 已提交
27 28 29 30 31
# NOTE(paddle-dev): All of these flags should be
# set before `import paddle`. Otherwise, it would
# not take any effect.
os.environ['FLAGS_eager_delete_tensor_gb'] = '0'  # enable gc

T
tianxin04 已提交
32 33 34 35
import paddle.fluid as fluid

import reader.task_reader as task_reader
from model.ernie import ErnieConfig
T
tianxin 已提交
36
from finetune.classifier import create_model, evaluate, predict
T
tianxin04 已提交
37
from optimization import optimization
C
chenxuyi 已提交
38
from utils.args import print_arguments, check_cuda, prepare_logger
T
tianxin04 已提交
39
from utils.init import init_pretraining_params, init_checkpoint
Z
zhengya01 已提交
40
from utils.cards import get_cards
T
format  
tianxin04 已提交
41
from finetune_args import parser
T
tianxin04 已提交
42 43

args = parser.parse_args()
C
chenxuyi 已提交
44
log = logging.getLogger()
T
tianxin04 已提交
45

T
format  
tianxin04 已提交
46

T
tianxin04 已提交
47 48 49 50 51
def main(args):
    ernie_config = ErnieConfig(args.ernie_config_path)
    ernie_config.print_config()

    if args.use_cuda:
C
chenxuyi 已提交
52 53 54
        dev_list = fluid.cuda_places()
        place = dev_list[0]
        dev_count = len(dev_list)
T
tianxin04 已提交
55 56 57 58 59
    else:
        place = fluid.CPUPlace()
        dev_count = int(os.environ.get('CPU_NUM', multiprocessing.cpu_count()))
    exe = fluid.Executor(place)

T
format  
tianxin04 已提交
60 61 62 63 64 65
    reader = task_reader.ClassifyReader(
        vocab_path=args.vocab_path,
        label_map_config=args.label_map_config,
        max_seq_len=args.max_seq_len,
        do_lower_case=args.do_lower_case,
        in_tokens=args.in_tokens,
T
tianxin 已提交
66 67 68 69 70 71
        random_seed=args.random_seed,
        tokenizer=args.tokenizer,
        is_classify=args.is_classify,
        is_regression=args.is_regression,
        for_cn=args.for_cn,
        task_id=args.task_id)
T
tianxin04 已提交
72 73 74 75 76

    if not (args.do_train or args.do_val or args.do_test):
        raise ValueError("For args `do_train`, `do_val` and `do_test`, at "
                         "least one of them must be True.")

T
tianxin 已提交
77 78
    if args.do_test:
        assert args.test_save is not None
T
tianxin04 已提交
79 80 81 82
    startup_prog = fluid.Program()
    if args.random_seed is not None:
        startup_prog.random_seed = args.random_seed

T
tianxin 已提交
83 84
    if args.predict_batch_size == None:
        args.predict_batch_size = args.batch_size
T
tianxin04 已提交
85 86 87 88 89
    if args.do_train:
        train_data_generator = reader.data_generator(
            input_file=args.train_set,
            batch_size=args.batch_size,
            epoch=args.epoch,
T
tianxin 已提交
90 91
            dev_count=dev_count,
            shuffle=True,
T
tianxin04 已提交
92 93 94 95 96 97 98 99 100 101 102
            phase="train")

        num_train_examples = reader.get_num_examples(args.train_set)

        if args.in_tokens:
            max_train_steps = args.epoch * num_train_examples // (
                args.batch_size // args.max_seq_len) // dev_count
        else:
            max_train_steps = args.epoch * num_train_examples // args.batch_size // dev_count

        warmup_steps = int(max_train_steps * args.warmup_proportion)
C
chenxuyi 已提交
103 104 105 106
        log.info("Device count: %d" % dev_count)
        log.info("Num train examples: %d" % num_train_examples)
        log.info("Max train steps: %d" % max_train_steps)
        log.info("Num warmup steps: %d" % warmup_steps)
T
tianxin04 已提交
107 108

        train_program = fluid.Program()
Z
zhengya01 已提交
109 110
        if args.random_seed is not None and args.enable_ce:
            train_program.random_seed = args.random_seed
T
tianxin04 已提交
111 112 113 114 115 116

        with fluid.program_guard(train_program, startup_prog):
            with fluid.unique_name.guard():
                train_pyreader, graph_vars = create_model(
                    args,
                    pyreader_name='train_reader',
T
tianxin 已提交
117 118 119 120
                    ernie_config=ernie_config,
                    is_classify=args.is_classify,
                    is_regression=args.is_regression)
                scheduled_lr, loss_scaling = optimization(
T
tianxin04 已提交
121 122 123 124 125 126 127 128
                    loss=graph_vars["loss"],
                    warmup_steps=warmup_steps,
                    num_train_steps=max_train_steps,
                    learning_rate=args.learning_rate,
                    train_program=train_program,
                    startup_prog=startup_prog,
                    weight_decay=args.weight_decay,
                    scheduler=args.lr_scheduler,
C
chenxuyi 已提交
129 130 131 132 133 134 135
		    use_fp16=args.use_fp16,
		    use_dynamic_loss_scaling=args.use_dynamic_loss_scaling,
		    init_loss_scaling=args.init_loss_scaling,
		    incr_every_n_steps=args.incr_every_n_steps,
		    decr_every_n_nan_or_inf=args.decr_every_n_nan_or_inf,
		    incr_ratio=args.incr_ratio,
		    decr_ratio=args.decr_ratio)
T
tianxin04 已提交
136 137 138 139 140 141 142 143 144

        if args.verbose:
            if args.in_tokens:
                lower_mem, upper_mem, unit = fluid.contrib.memory_usage(
                    program=train_program,
                    batch_size=args.batch_size // args.max_seq_len)
            else:
                lower_mem, upper_mem, unit = fluid.contrib.memory_usage(
                    program=train_program, batch_size=args.batch_size)
C
chenxuyi 已提交
145
            log.info("Theoretical memory usage in training: %.3f - %.3f %s" %
T
tianxin04 已提交
146 147 148 149 150 151 152 153 154
                  (lower_mem, upper_mem, unit))

    if args.do_val or args.do_test:
        test_prog = fluid.Program()
        with fluid.program_guard(test_prog, startup_prog):
            with fluid.unique_name.guard():
                test_pyreader, graph_vars = create_model(
                    args,
                    pyreader_name='test_reader',
T
tianxin 已提交
155 156 157
                    ernie_config=ernie_config,
                    is_classify=args.is_classify,
                    is_regression=args.is_regression)
T
tianxin04 已提交
158 159

        test_prog = test_prog.clone(for_test=True)
T
tianxin 已提交
160 161
    nccl2_num_trainers = 1
    nccl2_trainer_id = 0
C
chenxuyi 已提交
162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186
    if args.is_distributed:
        trainer_id = int(os.getenv("PADDLE_TRAINER_ID", "0"))
        worker_endpoints_env = os.getenv("PADDLE_TRAINER_ENDPOINTS")
        current_endpoint = os.getenv("PADDLE_CURRENT_ENDPOINT")
        worker_endpoints = worker_endpoints_env.split(",")
        trainers_num = len(worker_endpoints)
        
        log.info("worker_endpoints:{} trainers_num:{} current_endpoint:{} \
              trainer_id:{}".format(worker_endpoints, trainers_num,
                                    current_endpoint, trainer_id))

        # prepare nccl2 env.
        config = fluid.DistributeTranspilerConfig()
        config.mode = "nccl2"
        t = fluid.DistributeTranspiler(config=config)
        t.transpile(
            trainer_id,
            trainers=worker_endpoints_env,
            current_endpoint=current_endpoint,
            program=train_program if args.do_train else test_prog,
            startup_program=startup_prog)
        nccl2_num_trainers = trainers_num
        nccl2_trainer_id = trainer_id

    exe = fluid.Executor(place)
T
tianxin04 已提交
187 188 189 190
    exe.run(startup_prog)

    if args.do_train:
        if args.init_checkpoint and args.init_pretraining_params:
C
chenxuyi 已提交
191
            log.warning(
T
tianxin04 已提交
192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226
                "WARNING: args 'init_checkpoint' and 'init_pretraining_params' "
                "both are set! Only arg 'init_checkpoint' is made valid.")
        if args.init_checkpoint:
            init_checkpoint(
                exe,
                args.init_checkpoint,
                main_program=startup_prog,
                use_fp16=args.use_fp16)
        elif args.init_pretraining_params:
            init_pretraining_params(
                exe,
                args.init_pretraining_params,
                main_program=startup_prog,
                use_fp16=args.use_fp16)
    elif args.do_val or args.do_test:
        if not args.init_checkpoint:
            raise ValueError("args 'init_checkpoint' should be set if"
                             "only doing validation or testing!")
        init_checkpoint(
            exe,
            args.init_checkpoint,
            main_program=startup_prog,
            use_fp16=args.use_fp16)

    if args.do_train:
        exec_strategy = fluid.ExecutionStrategy()
        if args.use_fast_executor:
            exec_strategy.use_experimental_executor = True
        exec_strategy.num_threads = dev_count
        exec_strategy.num_iteration_per_drop_scope = args.num_iteration_per_drop_scope

        train_exe = fluid.ParallelExecutor(
            use_cuda=args.use_cuda,
            loss_name=graph_vars["loss"].name,
            exec_strategy=exec_strategy,
T
tianxin 已提交
227 228 229
            main_program=train_program,
            num_trainers=nccl2_num_trainers,
            trainer_id=nccl2_trainer_id)
T
tianxin04 已提交
230 231 232 233 234

        train_pyreader.decorate_tensor_provider(train_data_generator)
    else:
        train_exe = None

T
tianxin 已提交
235 236 237 238 239 240 241 242
    test_exe = exe
    if args.do_val or args.do_test:
        if args.use_multi_gpu_test:
            test_exe = fluid.ParallelExecutor(
                use_cuda=args.use_cuda,
                main_program=test_prog,
                share_vars_from=train_exe)

T
tianxin04 已提交
243 244 245 246 247 248
    if args.do_train:
        train_pyreader.start()
        steps = 0
        if warmup_steps > 0:
            graph_vars["learning_rate"] = scheduled_lr

Z
zhengya01 已提交
249
        ce_info = []
T
tianxin04 已提交
250
        time_begin = time.time()
T
tianxin 已提交
251 252
        last_epoch = 0
        current_epoch = 0
T
tianxin04 已提交
253 254 255 256 257 258
        while True:
            try:
                steps += 1
                if steps % args.skip_steps != 0:
                    train_exe.run(fetch_list=[])
                else:
T
tianxin 已提交
259 260 261 262 263 264 265 266 267
                    outputs = evaluate(
                        train_exe,
                        train_program,
                        train_pyreader,
                        graph_vars,
                        "train",
                        metric=args.metric,
                        is_classify=args.is_classify,
                        is_regression=args.is_regression)
T
tianxin04 已提交
268 269 270 271 272 273 274

                    if args.verbose:
                        verbose = "train pyreader queue size: %d, " % train_pyreader.queue.size(
                        )
                        verbose += "learning rate: %f" % (
                            outputs["learning_rate"]
                            if warmup_steps > 0 else args.learning_rate)
C
chenxuyi 已提交
275
                        log.info(verbose)
T
tianxin04 已提交
276 277 278 279

                    current_example, current_epoch = reader.get_train_progress()
                    time_end = time.time()
                    used_time = time_end - time_begin
T
tianxin 已提交
280 281

                    if args.is_classify:
C
chenxuyi 已提交
282
                        log.info(
T
tianxin 已提交
283 284 285 286 287 288 289 290
                            "epoch: %d, progress: %d/%d, step: %d, ave loss: %f, "
                            "ave acc: %f, speed: %f steps/s" %
                            (current_epoch, current_example, num_train_examples,
                             steps, outputs["loss"], outputs["accuracy"],
                             args.skip_steps / used_time))
                        ce_info.append(
                            [outputs["loss"], outputs["accuracy"], used_time])
                    if args.is_regression:
C
chenxuyi 已提交
291
                        log.info(
T
tianxin 已提交
292 293 294 295 296
                            "epoch: %d, progress: %d/%d, step: %d, ave loss: %f, "
                            " speed: %f steps/s" %
                            (current_epoch, current_example, num_train_examples,
                             steps, outputs["loss"],
                             args.skip_steps / used_time))
T
tianxin04 已提交
297 298
                    time_begin = time.time()

C
chenxuyi 已提交
299 300 301 302 303
                if nccl2_trainer_id == 0:
                    if steps % args.save_steps == 0:
                        save_path = os.path.join(args.checkpoints,
                                                 "step_" + str(steps))
                        fluid.io.save_persistables(exe, save_path, train_program)
T
tianxin04 已提交
304

C
chenxuyi 已提交
305 306 307 308 309 310
                    if steps % args.validation_steps == 0 or last_epoch != current_epoch:
                        # evaluate dev set
                        if args.do_val:
                            evaluate_wrapper(args, reader, exe, test_prog,
                                             test_pyreader, graph_vars,
                                             current_epoch, steps)
T
tianxin 已提交
311

C
chenxuyi 已提交
312 313 314 315
                        if args.do_test:
                            predict_wrapper(args, reader, exe, test_prog,
                                            test_pyreader, graph_vars,
                                            current_epoch, steps)
T
tianxin 已提交
316 317 318 319

                if last_epoch != current_epoch:
                    last_epoch = current_epoch

T
tianxin04 已提交
320 321 322 323 324
            except fluid.core.EOFException:
                save_path = os.path.join(args.checkpoints, "step_" + str(steps))
                fluid.io.save_persistables(exe, save_path, train_program)
                train_pyreader.reset()
                break
Z
zhengya01 已提交
325 326 327 328 329 330 331 332 333 334
        if args.enable_ce:
            card_num = get_cards()
            ce_loss = 0
            ce_acc = 0
            ce_time = 0
            try:
                ce_loss = ce_info[-2][0]
                ce_acc = ce_info[-2][1]
                ce_time = ce_info[-2][2]
            except:
C
chenxuyi 已提交
335 336 337 338
                log.info("ce info error")
            log.info("kpis\ttrain_duration_card%s\t%s" % (card_num, ce_time))
            log.info("kpis\ttrain_loss_card%s\t%f" % (card_num, ce_loss))
            log.info("kpis\ttrain_acc_card%s\t%f" % (card_num, ce_acc))
T
tianxin04 已提交
339 340 341

    # final eval on dev set
    if args.do_val:
T
tianxin 已提交
342 343 344 345 346 347 348 349 350 351
        evaluate_wrapper(args, reader, exe, test_prog, test_pyreader,
                         graph_vars, current_epoch, steps)

    # final eval on test set
    if args.do_test:
        predict_wrapper(args, reader, exe, test_prog, test_pyreader, graph_vars,
                        current_epoch, steps)

    # final eval on dianostic, hack for glue-ax
    if args.diagnostic:
T
tianxin04 已提交
352 353
        test_pyreader.decorate_tensor_provider(
            reader.data_generator(
T
tianxin 已提交
354
                args.diagnostic,
T
format  
tianxin04 已提交
355 356
                batch_size=args.batch_size,
                epoch=1,
T
tianxin 已提交
357
                dev_count=1,
T
tianxin04 已提交
358 359
                shuffle=False))

C
chenxuyi 已提交
360
        log.info("Final diagnostic")
T
tianxin 已提交
361 362 363 364 365 366 367 368 369 370 371 372 373
        qids, preds, probs = predict(
            test_exe,
            test_prog,
            test_pyreader,
            graph_vars,
            is_classify=args.is_classify,
            is_regression=args.is_regression)
        assert len(qids) == len(preds), '{} v.s. {}'.format(
            len(qids), len(preds))
        with open(args.diagnostic_save, 'w') as f:
            for id, s, p in zip(qids, preds, probs):
                f.write('{}\t{}\t{}\n'.format(id, s, p))

C
chenxuyi 已提交
374
        log.info("Done final diagnostic, saving to {}".format(
T
tianxin 已提交
375 376 377 378 379 380 381
            args.diagnostic_save))


def evaluate_wrapper(args, reader, exe, test_prog, test_pyreader, graph_vars,
                     epoch, steps):
    # evaluate dev set
    for ds in args.dev_set.split(','):
T
tianxin04 已提交
382 383
        test_pyreader.decorate_tensor_provider(
            reader.data_generator(
T
tianxin 已提交
384 385 386 387 388
                ds,
                batch_size=args.predict_batch_size,
                epoch=1,
                dev_count=1,
                shuffle=False))
C
chenxuyi 已提交
389
        log.info("validation result of dataset {}:".format(ds))
T
tianxin 已提交
390 391 392 393 394 395 396 397 398
        evaluate_info = evaluate(
            exe,
            test_prog,
            test_pyreader,
            graph_vars,
            "dev",
            metric=args.metric,
            is_classify=args.is_classify,
            is_regression=args.is_regression)
C
chenxuyi 已提交
399
        log.info(evaluate_info + ', file: {}, epoch: {}, steps: {}'.format(
T
tianxin 已提交
400 401 402 403 404 405 406 407 408 409 410 411 412 413
            ds, epoch, steps))


def predict_wrapper(args, reader, exe, test_prog, test_pyreader, graph_vars,
                    epoch, steps):
    test_sets = args.test_set.split(',')
    save_dirs = args.test_save.split(',')
    assert len(test_sets) == len(save_dirs)

    for test_f, save_f in zip(test_sets, save_dirs):
        test_pyreader.decorate_tensor_provider(
            reader.data_generator(
                test_f,
                batch_size=args.predict_batch_size,
T
tianxin04 已提交
414
                epoch=1,
T
tianxin 已提交
415
                dev_count=1,
T
tianxin04 已提交
416
                shuffle=False))
T
tianxin 已提交
417 418

        save_path = save_f + '.' + str(epoch) + '.' + str(steps)
C
chenxuyi 已提交
419
        log.info("testing {}, save to {}".format(test_f, save_path))
T
tianxin 已提交
420 421 422 423 424 425 426 427 428 429 430
        qids, preds, probs = predict(
            exe,
            test_prog,
            test_pyreader,
            graph_vars,
            is_classify=args.is_classify,
            is_regression=args.is_regression)

        save_dir = os.path.dirname(save_path)
        if not os.path.exists(save_dir):
            os.makedirs(save_dir)
C
chenxuyi 已提交
431 432 433
        else:
            log.warning('save dir exsits: %s, will skip saving' % save_dir)

T
tianxin 已提交
434 435 436 437

        with open(save_path, 'w') as f:
            for id, s, p in zip(qids, preds, probs):
                f.write('{}\t{}\t{}\n'.format(id, s, p))
T
tianxin04 已提交
438 439 440


if __name__ == '__main__':
C
chenxuyi 已提交
441
    prepare_logger(log)
T
tianxin04 已提交
442
    print_arguments(args)
T
tianxin 已提交
443
    check_cuda(args.use_cuda)
T
tianxin04 已提交
444
    main(args)