bert.py 8.7 KB
Newer Older
Y
Yibing Liu 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54
#   Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""BERT model."""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import six
import json
import numpy as np
import paddle.fluid as fluid
from model.transformer_encoder import encoder, pre_process_layer


class BertConfig(object):
    def __init__(self, config_path):
        self._config_dict = self._parse(config_path)

    def _parse(self, config_path):
        try:
            with open(config_path) as json_file:
                config_dict = json.load(json_file)
        except Exception:
            raise IOError("Error in parsing bert model config file '%s'" %
                          config_path)
        else:
            return config_dict

    def __getitem__(self, key):
        return self._config_dict[key]

    def print_config(self):
        for arg, value in sorted(six.iteritems(self._config_dict)):
            print('%s: %s' % (arg, value))
        print('------------------------------------------------')


class BertModel(object):
    def __init__(self,
                 src_ids,
                 position_ids,
                 sentence_ids,
55
                 input_mask,
Y
Yibing Liu 已提交
56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75
                 config,
                 weight_sharing=True,
                 use_fp16=False):

        self._emb_size = config['hidden_size']
        self._n_layer = config['num_hidden_layers']
        self._n_head = config['num_attention_heads']
        self._voc_size = config['vocab_size']
        self._max_position_seq_len = config['max_position_embeddings']
        self._sent_types = config['type_vocab_size']
        self._hidden_act = config['hidden_act']
        self._prepostprocess_dropout = config['hidden_dropout_prob']
        self._attention_dropout = config['attention_probs_dropout_prob']
        self._weight_sharing = weight_sharing

        self._word_emb_name = "word_embedding"
        self._pos_emb_name = "pos_embedding"
        self._sent_emb_name = "sent_embedding"
        self._dtype = "float16" if use_fp16 else "float32"

76
        # Initialize all weigths by truncated normal initializer, and all biases 
Y
Yibing Liu 已提交
77 78 79 80
        # will be initialized by constant zero by default.
        self._param_initializer = fluid.initializer.TruncatedNormal(
            scale=config['initializer_range'])

81
        self._build_model(src_ids, position_ids, sentence_ids, input_mask)
Y
Yibing Liu 已提交
82

83
    def _build_model(self, src_ids, position_ids, sentence_ids, input_mask):
Y
Yibing Liu 已提交
84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111
        # padding id in vocabulary must be set to 0
        emb_out = fluid.layers.embedding(
            input=src_ids,
            size=[self._voc_size, self._emb_size],
            dtype=self._dtype,
            param_attr=fluid.ParamAttr(
                name=self._word_emb_name, initializer=self._param_initializer),
            is_sparse=False)
        position_emb_out = fluid.layers.embedding(
            input=position_ids,
            size=[self._max_position_seq_len, self._emb_size],
            dtype=self._dtype,
            param_attr=fluid.ParamAttr(
                name=self._pos_emb_name, initializer=self._param_initializer))

        sent_emb_out = fluid.layers.embedding(
            sentence_ids,
            size=[self._sent_types, self._emb_size],
            dtype=self._dtype,
            param_attr=fluid.ParamAttr(
                name=self._sent_emb_name, initializer=self._param_initializer))

        emb_out = emb_out + position_emb_out
        emb_out = emb_out + sent_emb_out

        emb_out = pre_process_layer(
            emb_out, 'nd', self._prepostprocess_dropout, name='pre_encoder')

C
cclauss 已提交
112
        if self._dtype == "float16":
113
            input_mask = fluid.layers.cast(x=input_mask, dtype=self._dtype)
Y
Yibing Liu 已提交
114

115 116 117
        self_attn_mask = fluid.layers.matmul(
            x=input_mask, y=input_mask, transpose_y=True)
        self_attn_mask = fluid.layers.scale(
Y
Yibing Liu 已提交
118
            x=self_attn_mask, scale=10000.0, bias=-1.0, bias_after_scale=False)
Y
Yibing Liu 已提交
119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143
        n_head_self_attn_mask = fluid.layers.stack(
            x=[self_attn_mask] * self._n_head, axis=1)
        n_head_self_attn_mask.stop_gradient = True

        self._enc_out = encoder(
            enc_input=emb_out,
            attn_bias=n_head_self_attn_mask,
            n_layer=self._n_layer,
            n_head=self._n_head,
            d_key=self._emb_size // self._n_head,
            d_value=self._emb_size // self._n_head,
            d_model=self._emb_size,
            d_inner_hid=self._emb_size * 4,
            prepostprocess_dropout=self._prepostprocess_dropout,
            attention_dropout=self._attention_dropout,
            relu_dropout=0,
            hidden_act=self._hidden_act,
            preprocess_cmd="",
            postprocess_cmd="dan",
            param_initializer=self._param_initializer,
            name='encoder')

    def get_sequence_output(self):
        return self._enc_out

144
    def get_pooled_output(self):
Y
Yibing Liu 已提交
145
        """Get the first feature of each sequence for classification"""
146 147 148

        next_sent_feat = fluid.layers.slice(
            input=self._enc_out, axes=[1], starts=[0], ends=[1])
Y
Yibing Liu 已提交
149 150 151 152 153 154 155 156 157
        next_sent_feat = fluid.layers.fc(
            input=next_sent_feat,
            size=self._emb_size,
            act="tanh",
            param_attr=fluid.ParamAttr(
                name="pooled_fc.w_0", initializer=self._param_initializer),
            bias_attr="pooled_fc.b_0")
        return next_sent_feat

158
    def get_pretraining_output(self, mask_label, mask_pos, labels):
Y
Yibing Liu 已提交
159 160 161 162 163
        """Get the loss & accuracy for pretraining"""

        mask_pos = fluid.layers.cast(x=mask_pos, dtype='int32')

        # extract the first token feature in each sentence
164 165 166
        next_sent_feat = self.get_pooled_output()
        reshaped_emb_out = fluid.layers.reshape(
            x=self._enc_out, shape=[-1, self._emb_size])
Y
Yibing Liu 已提交
167
        # extract masked tokens' feature
168
        mask_feat = fluid.layers.gather(input=reshaped_emb_out, index=mask_pos)
Y
Yibing Liu 已提交
169 170 171 172 173 174 175 176 177 178

        # transform: fc
        mask_trans_feat = fluid.layers.fc(
            input=mask_feat,
            size=self._emb_size,
            act=self._hidden_act,
            param_attr=fluid.ParamAttr(
                name='mask_lm_trans_fc.w_0',
                initializer=self._param_initializer),
            bias_attr=fluid.ParamAttr(name='mask_lm_trans_fc.b_0'))
179
        # transform: layer norm 
Y
Yibing Liu 已提交
180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226
        mask_trans_feat = pre_process_layer(
            mask_trans_feat, 'n', name='mask_lm_trans')

        mask_lm_out_bias_attr = fluid.ParamAttr(
            name="mask_lm_out_fc.b_0",
            initializer=fluid.initializer.Constant(value=0.0))
        if self._weight_sharing:
            fc_out = fluid.layers.matmul(
                x=mask_trans_feat,
                y=fluid.default_main_program().global_block().var(
                    self._word_emb_name),
                transpose_y=True)
            fc_out += fluid.layers.create_parameter(
                shape=[self._voc_size],
                dtype=self._dtype,
                attr=mask_lm_out_bias_attr,
                is_bias=True)

        else:
            fc_out = fluid.layers.fc(input=mask_trans_feat,
                                     size=self._voc_size,
                                     param_attr=fluid.ParamAttr(
                                         name="mask_lm_out_fc.w_0",
                                         initializer=self._param_initializer),
                                     bias_attr=mask_lm_out_bias_attr)

        mask_lm_loss = fluid.layers.softmax_with_cross_entropy(
            logits=fc_out, label=mask_label)
        mean_mask_lm_loss = fluid.layers.mean(mask_lm_loss)

        next_sent_fc_out = fluid.layers.fc(
            input=next_sent_feat,
            size=2,
            param_attr=fluid.ParamAttr(
                name="next_sent_fc.w_0", initializer=self._param_initializer),
            bias_attr="next_sent_fc.b_0")

        next_sent_loss, next_sent_softmax = fluid.layers.softmax_with_cross_entropy(
            logits=next_sent_fc_out, label=labels, return_softmax=True)

        next_sent_acc = fluid.layers.accuracy(
            input=next_sent_softmax, label=labels)

        mean_next_sent_loss = fluid.layers.mean(next_sent_loss)

        loss = mean_next_sent_loss + mean_mask_lm_loss
        return next_sent_acc, mean_mask_lm_loss, loss