optimization.py 5.0 KB
Newer Older
Z
zhanghan17 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals
from __future__ import absolute_import

import logging
import re
from paddle.fluid import framework
from paddle.fluid.framework import Variable, default_main_program
import numpy as np
import paddle as P
import paddle.distributed.fleet as fleet
from propeller.paddle.train.hooks import RunHook
import paddle.fluid as F
log = logging.getLogger(__name__)

from ernie_gram.utils import create_if_not_exists, get_warmup_and_linear_decay

class AdamW(P.optimizer.AdamW):
    """AdamW object for dygraph"""
    def __init__(self, *args, **kwargs):
        layerwise_lr_decay = kwargs.pop('layerwise_lr_decay_rate', 0.8) 
        n_layers = kwargs.pop('n_layers', 12) 
        var_name_to_exclude = kwargs.pop('var_name_to_exclude', '.*layer_norm_scale|.*layer_norm_bias|.*b_0')
        super(AdamW, self).__init__(*args, **kwargs)
        self.ld = layerwise_lr_decay
        self.pat = re.compile(var_name_to_exclude)
        self.n_layers = n_layers

    def _get_layerwise_lr_decay_rate(self, param):
        #if self.pat.match(param.name):
        #    return 1.0
        if param.name.startswith("encoder_layer"):
            layer = int(param.name.split("_")[2])
            decay_rate = self.ld ** (self.n_layers - layer)
        elif "embedding" in param.name:
            decay_rate = self.ld ** (self.n_layers + 1)
        else:
            decay_rate = 1.0
        return decay_rate
            

    def _create_param_lr(self, param_and_grad):
        # create learning rate tensor for every parameter
        param = param_and_grad[0]
        param_lr = param.optimize_attr['learning_rate'] * self._get_layerwise_lr_decay_rate(param)
        if type(param_lr) == Variable:
            return param_lr
        else:
            if param_lr == 1.0:
                return self._global_learning_rate()
            else:
                with default_main_program()._lr_schedule_guard(
                        is_with_opt=True), framework.name_scope(
                            'scale_with_param_lr'):
                    return self._global_learning_rate() * param_lr

    def apply_optimize(self, loss, startup_program, params_grads):
        super(AdamW, self).apply_optimize(loss, startup_program, params_grads)
        for p, g in params_grads:
            #log.debug(L.reduce_mean(p))
            if not self.pat.match(p.name):
                L.assign(p * (1. - self.wd * self.current_step_lr()), p)


def optimization(
        loss,
        warmup_steps,
        num_train_steps,
        learning_rate,
        train_program,
        startup_prog,
        weight_decay,
        scheduler='linear_warmup_decay',
        use_fp16=False, ):
    """do backword for static"""

    def exclude_from_weight_decay(param):
        name = param.rstrip('.master')
        if name.find("layer_norm") > -1:
            return True
        bias_suffix = ["_bias", "_b", ".b_0"]
        for suffix in bias_suffix:
            if name.endswith(suffix):
                return True
        return False

    g_clip = P.nn.ClipGradByGlobalNorm(1.0)
    lr_scheduler = P.optimizer.lr.LambdaDecay(
        learning_rate,
        get_warmup_and_linear_decay(num_train_steps, warmup_steps))

    optimizer = AdamW(
        learning_rate=lr_scheduler,
        weight_decay=weight_decay,
        grad_clip=g_clip,
        apply_decay_param_fun=exclude_from_weight_decay)

    if use_fp16:
        log.info('AMP activated')
        if weight_decay > 0.:
            raise ValueError(
                'paddle amp will ignore `weight_decay`, see https://github.com/PaddlePaddle/Paddle/issues/29794'
            )
        #amp_list = P.fluid.contrib.mixed_precision.AutoMixedPrecisionLists(
        #    custom_white_list=['softmax', 'layer_norm', 'gelu'])
        optimizer = P.fluid.contrib.mixed_precision.decorate(
            optimizer, init_loss_scaling=2**15, use_dynamic_loss_scaling=True)
        _, param_grads = optimizer.minimize(loss)
        loss_scaling = P.static.default_main_program().global_block().var(
            'loss_scaling_0')
    else:
        _, param_grads = optimizer.minimize(loss)
        loss_scaling = None

    class LRStepHook(RunHook):
        def after_run(self, _, __):
            lr_scheduler.step()
            log.debug('lr step: %.5f' % lr_scheduler.get_lr())

    return LRStepHook(), loss_scaling