finetune_mrc.py 9.1 KB
Newer Older
Z
zhanghan17 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import division
from __future__ import absolute_import
from __future__ import print_function
from __future__ import unicode_literals

import os
import re
import time
import logging
import json
from pathlib import Path
from random import random
from tqdm import tqdm
from functools import reduce, partial
import pickle
import argparse
from functools import partial
from io import open

import numpy as np
import logging

import paddle as P

from propeller import log
import propeller.paddle as propeller
from ernie_gram.optimization import AdamW

from ernie.modeling_ernie import ErnieModel, ErnieModelForQuestionAnswering
from ernie.tokenizing_ernie import ErnieTokenizer, ErnieTinyTokenizer
#from ernie.optimization import AdamW, LinearDecay

from ernie_gram.mrc import mrc_reader
from ernie_gram.mrc import mrc_metrics
from ernie_gram.utils import create_if_not_exists, get_warmup_and_linear_decay

log.setLevel(logging.DEBUG)
logging.getLogger().setLevel(logging.DEBUG)


def evaluate(model, ds, all_examples, all_features, tokenizer, args):
    dev_file = json.loads(open(args.dev_file, encoding='utf8').read())
    with P.no_grad():
        log.debug('start eval')
        model.eval()
        all_res = []
        for step, (uids, token_ids, token_type_ids, _, __) in enumerate(
                P.io.DataLoader(
                    ds, places=P.CUDAPlace(env.dev_id), batch_size=None)):
            _, start_logits, end_logits = model(token_ids, token_type_ids)
            res = [
                mrc_metrics.RawResult(
                    unique_id=u, start_logits=s, end_logits=e)
                for u, s, e in zip(uids.numpy(),
                                   start_logits.numpy(), end_logits.numpy())
            ]
            all_res += res
        open('all_res', 'wb').write(pickle.dumps(all_res))
        all_pred, all_nbests = mrc_metrics.make_results(
            tokenizer,
            all_examples,
            all_features,
            all_res,
            n_best_size=args.n_best_size,
            max_answer_length=args.max_answer_length,
            do_lower_case=tokenizer.lower)
        f1, em, _, __ = mrc_metrics.evaluate(dev_file, all_pred)
        model.train()
        log.debug('done eval')
        return f1, em


def train(model, train_dataset, dev_dataset, dev_examples, dev_features,
          tokenizer, args):
    model = P.DataParallel(model)

    max_steps = args.max_steps


    g_clip = P.nn.ClipGradByGlobalNorm(1.0)  #experimental
    lr_scheduler = P.optimizer.lr.LambdaDecay(
        args.lr,
        get_warmup_and_linear_decay(max_steps,
                                    int(args.warmup_proportion * max_steps)))

    opt = AdamW(
        lr_scheduler,
        parameters=model.parameters(),
        weight_decay=args.wd,
        grad_clip=g_clip)

    train_dataset = train_dataset \
            .cache_shuffle_shard(env.nranks, env.dev_id, drop_last=True) \
            .padded_batch(args.bsz)

    log.debug('init training with args: %s' % repr(args))
    scaler = P.amp.GradScaler(enable=args.use_amp)
    create_if_not_exists(args.save_dir)

    with P.amp.auto_cast(enable=args.use_amp):
        for step, (_, token_ids, token_type_ids, start_pos,
                   end_pos) in enumerate(
                       P.io.DataLoader(
                           train_dataset,
                           places=P.CUDAPlace(env.dev_id),
                           batch_size=None)):
            loss, _, __ = model(
                token_ids,
                token_type_ids,
                start_pos=start_pos,
                end_pos=end_pos)
            loss = scaler.scale(loss)
            loss.backward()
            scaler.minimize(opt, loss)
            model.clear_gradients()
            lr_scheduler.step()

            if env.dev_id == 0 and step % 10==0 and step:
                _lr = lr_scheduler.get_lr()
                if args.use_amp:
                    _l = (loss / scaler._scale).numpy()
                    msg = '[rank-%d][step-%d] train loss %.5f lr %.3e scaling %.3e' % (
                        env.dev_id, step, _l, _lr, scaler._scale.numpy())
                else:
                    _l = loss.numpy()
                    msg = '[rank-%d][step-%d] train loss %.5f lr %.3e' % (
                        env.dev_id, step, _l, _lr)
                log.debug(msg)

            if env.dev_id == 0 and step % 100==0 and step:
                print(step)
                f1, em = evaluate(model, dev_dataset, dev_examples,
                                  dev_features, tokenizer, args)
                log.debug('[step %d] eval result: f1 %.5f em %.5f' %
                          (step, f1, em))
                if env.dev_id == 0 and args.save_dir is not None:
                    P.save(model.state_dict(), args.save_dir / 'ckpt.bin')
            if step > max_steps:
                break


if __name__ == "__main__":
    parser = argparse.ArgumentParser('MRC model with ERNIE')
    parser.add_argument(
        '--from_pretrained',
        type=Path,
        required=True,
        help='pretrained model directory or tag')
    parser.add_argument(
        '--max_seqlen',
        type=int,
        default=512,
        help='max sentence length, should not greater than 512')
    parser.add_argument('--bsz', type=int, default=16, help='batchsize')
    parser.add_argument('--max_steps', type=int, required=True, help='max steps')
    parser.add_argument(
        '--train_file',
        type=str,
        required=True,
        help='data directory includes train / develop data')
    parser.add_argument(
        '--dev_file',
        type=str,
        required=True,
        help='data directory includes train / develop data')
    parser.add_argument('--warmup_proportion', type=float, default=0.0)
    parser.add_argument('--lr', type=float, default=3e-5, help='learning rate')
    parser.add_argument(
        '--save_dir', type=Path, required=True, help='model output directory')
    parser.add_argument(
        '--n_best_size', type=int, default=20, help='nbest prediction to keep')
    parser.add_argument(
        '--max_answer_length', type=int, default=100, help='max answer span')
    parser.add_argument(
        '--wd',
        type=float,
        default=0.01,
        help='weight decay, aka L2 regularizer')
    parser.add_argument(
        '--use_amp',
        action='store_true',
        help='only activate AMP(auto mixed precision accelatoin) on TensorCore compatible devices'
    )

    args = parser.parse_args()

    env = P.distributed.ParallelEnv()
    P.distributed.init_parallel_env()

    tokenizer = ErnieTokenizer.from_pretrained(args.from_pretrained)

    if not os.path.exists(args.train_file):
        raise RuntimeError('input data not found at %s' % args.train_file)
    if not os.path.exists(args.dev_file):
        raise RuntimeError('input data not found at %s' % args.dev_file)

    log.info('making train/dev data...')
    train_examples = mrc_reader.read_files(args.train_file, is_training=True)
    train_features = mrc_reader.convert_example_to_features(
        train_examples, args.max_seqlen, tokenizer, is_training=True)

    dev_examples = mrc_reader.read_files(args.dev_file, is_training=False)
    dev_features = mrc_reader.convert_example_to_features(
        dev_examples, args.max_seqlen, tokenizer, is_training=False)

    log.info('train examples: %d, features: %d' %
             (len(train_examples), len(train_features)))

    def map_fn(unique_id, example_index, doc_span_index, tokens,
               token_to_orig_map, token_is_max_context, token_ids,
               position_ids, text_type_ids, start_position, end_position):
        if start_position is None:
            start_position = 0
        if end_position is None:
            end_position = 0
        return np.array(unique_id), np.array(token_ids), np.array(
            text_type_ids), np.array(start_position), np.array(end_position)

    train_dataset = propeller.data.Dataset.from_list(train_features).map(
        map_fn)

    dev_dataset = propeller.data.Dataset.from_list(dev_features).map(
        map_fn).padded_batch(args.bsz)

    model = ErnieModelForQuestionAnswering.from_pretrained(
        args.from_pretrained, name='')

    train(model, train_dataset, dev_dataset, dev_examples, dev_features,
          tokenizer, args)

    if env.dev_id == 0:
        f1, em = evaluate(model, dev_dataset, dev_examples, dev_features,
                          tokenizer, args)
        log.debug('final eval result: f1 %.5f em %.5f' % (f1, em))
    if env.dev_id == 0 and args.save_dir is not None:
        P.save(model.state_dict(), args.save_dir / 'ckpt.bin')