finetune_launch.py 6.3 KB
Newer Older
C
chenxuyi 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182
#   Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals
from __future__ import absolute_import

import sys
import subprocess
import os
import six
import copy
import argparse
import time
import logging

from utils.args import ArgumentGroup, print_arguments, prepare_logger
from finetune_args import parser as worker_parser

# yapf: disable
parser = argparse.ArgumentParser(__doc__)
multip_g = ArgumentGroup(parser, "multiprocessing", 
        "start paddle training using multi-processing mode.")
multip_g.add_arg("node_ips", str, None, 
        "paddle trainer ips")
multip_g.add_arg("node_id", int, 0, 
        "the trainer id of the node for multi-node distributed training.")
multip_g.add_arg("print_config", bool, True, 
        "print the config of multi-processing mode.")
multip_g.add_arg("current_node_ip", str, None, 
        "the ip of current node.")
multip_g.add_arg("split_log_path", str, "log",
        "log path for each trainer.")
multip_g.add_arg("log_prefix", str, "",
        "the prefix name of job log.")
multip_g.add_arg("nproc_per_node", int, 8, 
        "the number of process to use on each node.")
multip_g.add_arg("selected_gpus", str, "0,1,2,3,4,5,6,7", 
        "the gpus selected to use.")
multip_g.add_arg("training_script", str, None, "the program/script to be lauched "
        "in parallel followed by all the arguments", positional_arg=True)
multip_g.add_arg("training_script_args", str, None,
        "training script args", positional_arg=True, nargs=argparse.REMAINDER)
# yapf: enable


log = logging.getLogger()

def start_procs(args):
    procs = []
    log_fns = []

    default_env = os.environ.copy()

    node_id = args.node_id
    node_ips = [x.strip() for x in args.node_ips.split(',')]
    current_ip = args.current_node_ip
    if args.current_node_ip is None:
        assert len(node_ips) == 1
        current_ip = node_ips[0]
        log.info(current_ip)

    num_nodes = len(node_ips)
    selected_gpus = [x.strip() for x in args.selected_gpus.split(',')]
    selected_gpu_num = len(selected_gpus)

    all_trainer_endpoints = ""
    for ip in node_ips:
        for i in range(args.nproc_per_node):
            if all_trainer_endpoints != "":
                all_trainer_endpoints += ","
            all_trainer_endpoints += "%s:617%d" % (ip, i)

    nranks = num_nodes * args.nproc_per_node
    gpus_per_proc = args.nproc_per_node % selected_gpu_num 
    if gpus_per_proc == 0:
        gpus_per_proc =  selected_gpu_num // args.nproc_per_node
    else:
        gpus_per_proc =  selected_gpu_num // args.nproc_per_node + 1

    selected_gpus_per_proc = [selected_gpus[i:i + gpus_per_proc] for i in range(0, len(selected_gpus), gpus_per_proc)]

    if args.print_config:
        log.info("all_trainer_endpoints: %s"
              ", node_id: %s"
              ", current_ip: %s"
              ", num_nodes: %s"
              ", node_ips: %s"
              ", gpus_per_proc: %s"
              ", selected_gpus_per_proc: %s"
              ", nranks: %s" % (
                all_trainer_endpoints, 
                node_id,
                current_ip,
                num_nodes,
                node_ips,
                gpus_per_proc,
                selected_gpus_per_proc,
                nranks))


    current_env = copy.copy(default_env)
    procs = []
    cmds = []
    log_fns = []
    for i in range(0, args.nproc_per_node):
        trainer_id = node_id * args.nproc_per_node + i
        assert current_ip is not None
        current_env.update({
            "FLAGS_selected_gpus": "%s" % ",".join([str(s) for s in selected_gpus_per_proc[i]]),
            "PADDLE_TRAINER_ID" : "%d" % trainer_id,
            "PADDLE_CURRENT_ENDPOINT": "%s:617%d" % (current_ip, i),
            "PADDLE_TRAINERS_NUM": "%d" % nranks,
            "PADDLE_TRAINER_ENDPOINTS": all_trainer_endpoints,
            "PADDLE_NODES_NUM": "%d" % num_nodes
        })

        try:
            idx = args.training_script_args.index('--is_distributed')
            args.training_script_args[idx + 1] = 'true'
        except ValueError:
            args.training_script_args += ['--is_distributed', 'true']

        cmd = [sys.executable, "-u",
               args.training_script] + args.training_script_args
        cmds.append(cmd)

        if args.split_log_path:
            fn = open("%s/%sjob.log.%d" % (args.split_log_path, args.log_prefix, trainer_id), "a")
            log_fns.append(fn)
            process = subprocess.Popen(cmd, env=current_env, stdout=fn, stderr=fn)
        else:
            process = subprocess.Popen(cmd, env=current_env)
        log.info('subprocess launched')
        procs.append(process)

    try:
        for i in range(len(procs)):
            proc = procs[i]
            proc.wait()
            if len(log_fns) > 0:
                log_fns[i].close()
            if proc.returncode != 0:    
                raise subprocess.CalledProcessError(returncode=procs[i].returncode,
                                                    cmd=cmds[i])
            else:
                log.info("proc %d finsh" % i)
    except KeyboardInterrupt as e:
        for p in procs:
            log.info('killing %s' % p)
            p.terminate()


def main(args):
    if args.print_config:
        print_arguments(args)
    start_procs(args)


if __name__ == "__main__":
    prepare_logger(log)
    lanch_args = parser.parse_args()
    finetuning_args = worker_parser.parse_args(
            lanch_args.training_script_args)
    init_path = finetuning_args.init_pretraining_params 
    log.info("init model: %s" % init_path)
    if not finetuning_args.use_fp16:
        os.system('rename .master "" ' + init_path + '/*.master') 
    main(lanch_args)