pretraining.py 14.6 KB
Newer Older
T
tianxin04 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
#   Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
C
chenxuyi 已提交
14
from __future__ import absolute_import
T
tianxin04 已提交
15
from __future__ import division
C
chenxuyi 已提交
16 17 18
from __future__ import print_function
from __future__ import unicode_literals
from __future__ import absolute_import
T
tianxin04 已提交
19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34

import os
import numpy as np
import types
import gzip
import logging
import re
import six
import collections
import tokenization

import paddle
import paddle.fluid as fluid

from batching import prepare_batch_data

T
format  
tianxin04 已提交
35

T
tianxin04 已提交
36 37 38 39 40
class ErnieDataReader(object):
    def __init__(self,
                 filelist,
                 vocab_path,
                 batch_size=4096,
C
chenxuyi 已提交
41
                 in_tokens=True,
T
tianxin04 已提交
42 43
                 max_seq_len=512,
                 shuffle_files=True,
C
chenxuyi 已提交
44
                 random_seed=1,
T
tianxin04 已提交
45 46 47 48 49 50 51 52
                 epoch=100,
                 voc_size=0,
                 is_test=False,
                 generate_neg_sample=False):

        self.vocab = self.load_vocab(vocab_path)
        self.filelist = filelist
        self.batch_size = batch_size
C
chenxuyi 已提交
53 54
        self.in_tokens = in_tokens
        self.random_seed = random_seed
T
tianxin04 已提交
55 56 57 58 59 60 61 62 63 64 65 66 67 68
        self.shuffle_files = shuffle_files
        self.epoch = epoch
        self.current_epoch = 0
        self.current_file_index = 0
        self.total_file = 0
        self.current_file = None
        self.voc_size = voc_size
        self.max_seq_len = max_seq_len
        self.pad_id = self.vocab["[PAD]"]
        self.cls_id = self.vocab["[CLS]"]
        self.sep_id = self.vocab["[SEP]"]
        self.mask_id = self.vocab["[MASK]"]
        self.is_test = is_test
        self.generate_neg_sample = generate_neg_sample
C
chenxuyi 已提交
69 70 71 72 73 74
        
        self.trainer_id = 0
        self.trainer_nums = 1
        self.files = open(filelist).readlines()
        self.total_file = len(self.files)
        
T
tianxin04 已提交
75 76 77
        if self.is_test:
            self.epoch = 1
            self.shuffle_files = False
C
chenxuyi 已提交
78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104
        
        self.global_rng = np.random.RandomState(random_seed)
        if self.shuffle_files:
            if os.getenv("PADDLE_TRAINER_ID"):
                self.trainer_id = int(os.getenv("PADDLE_TRAINER_ID"))
            if os.getenv("PADDLE_NODES_NUM"):
                self.trainer_nums = int(os.getenv("PADDLE_TRAINERS_NUM"))
            #renew total_file
            self.total_file = len(self.files) // self.trainer_nums * self.trainer_nums
            if len(self.files) < self.trainer_nums:
                raise RuntimeError('not enouph train file to shard, file:%d num_trainer:%d' % (len(self.files), self.trainer_nums))

            tmp_files = []
            for each in range(epoch):
                each_files = self.files 
                self.global_rng.shuffle(each_files)
                tmp_files += each_files
            self.files = tmp_files
            #renew epochs
            self.epoch = len(self.files) // self.total_file * self.total_file
        
        assert self.total_file > 0, \
            "[Error] data_dir is empty or less than %d" % self.trainer_nums

        if self.in_tokens:
            assert self.batch_size > 100, "Current batch size means total token's number, \
                                       it should not be set to too small number."
T
tianxin04 已提交
105 106 107 108 109 110 111 112 113

    def get_progress(self):
        """return current progress of traning data
        """
        return self.current_epoch, self.current_file_index, self.total_file, self.current_file, self.mask_type

    def parse_line(self, line, max_seq_len=512):
        """ parse one line to token_ids, sentence_ids, pos_ids, label
        """
C
chenxuyi 已提交
114 115 116 117
        line = line.strip().split(";")
        assert len(line) == 5, \
                "One sample must have %d fields!" % 5

T
tianxin04 已提交
118 119 120 121 122
        (token_ids, sent_ids, pos_ids, seg_labels, label) = line
        token_ids = [int(token) for token in token_ids.split(" ")]
        sent_ids = [int(token) for token in sent_ids.split(" ")]
        pos_ids = [int(token) for token in pos_ids.split(" ")]
        seg_labels = [int(seg_label) for seg_label in seg_labels.split(" ")]
C
chenxuyi 已提交
123
    
T
format  
tianxin04 已提交
124 125
        assert len(token_ids) == len(sent_ids) == len(pos_ids) == len(
            seg_labels
T
tianxin04 已提交
126 127 128 129 130 131 132 133 134 135
        ), "[Must be true]len(token_ids) == len(sent_ids) == len(pos_ids) == len(seg_labels)"
        label = int(label)
        if len(token_ids) > max_seq_len:
            return None
        return [token_ids, sent_ids, pos_ids, label, seg_labels]

    def read_file(self, file):
        assert file.endswith('.gz'), "[ERROR] %s is not a gzip file" % file
        with gzip.open(file, "rb") as f:
            for line in f:
C
chenxuyi 已提交
136
                line = line.decode('utf8')
T
tianxin04 已提交
137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196
                parsed_line = self.parse_line(
                    line, max_seq_len=self.max_seq_len)
                if parsed_line is None:
                    continue
                yield parsed_line

    def convert_to_unicode(self, text):
        """Converts `text` to Unicode (if it's not already), assuming utf-8 input."""
        if six.PY3:
            if isinstance(text, str):
                return text
            elif isinstance(text, bytes):
                return text.decode("utf-8", "ignore")
            else:
                raise ValueError("Unsupported string type: %s" % (type(text)))
        elif six.PY2:
            if isinstance(text, str):
                return text.decode("utf-8", "ignore")
            elif isinstance(text, unicode):
                return text
            else:
                raise ValueError("Unsupported string type: %s" % (type(text)))
        else:
            raise ValueError("Not running on Python2 or Python 3?")

    def load_vocab(self, vocab_file):
        """Loads a vocabulary file into a dictionary."""
        vocab = collections.OrderedDict()
        fin = open(vocab_file)
        for num, line in enumerate(fin):
            items = self.convert_to_unicode(line.strip()).split("\t")
            if len(items) > 2:
                break
            token = items[0]
            index = items[1] if len(items) == 2 else num
            token = token.strip()
            vocab[token] = int(index)
        return vocab

    def random_pair_neg_samples(self, pos_samples):
        """ randomly generate negtive samples using pos_samples

            Args:
                pos_samples: list of positive samples
            
            Returns:
                neg_samples: list of negtive samples
        """
        np.random.shuffle(pos_samples)
        num_sample = len(pos_samples)
        neg_samples = []
        miss_num = 0

        def split_sent(sample, max_len, sep_id):
            token_seq, type_seq, pos_seq, label, seg_labels = sample
            sep_index = token_seq.index(sep_id)
            left_len = sep_index - 1
            if left_len <= max_len:
                return (token_seq[1:sep_index], seg_labels[1:sep_index])
            else:
T
format  
tianxin04 已提交
197 198 199
                return [
                    token_seq[sep_index + 1:-1], seg_labels[sep_index + 1:-1]
                ]
T
tianxin04 已提交
200 201 202

        for i in range(num_sample):
            pair_index = (i + 1) % num_sample
T
format  
tianxin04 已提交
203 204 205 206 207
            left_tokens, left_seg_labels = split_sent(
                pos_samples[i], (self.max_seq_len - 3) // 2, self.sep_id)
            right_tokens, right_seg_labels = split_sent(
                pos_samples[pair_index],
                self.max_seq_len - 3 - len(left_tokens), self.sep_id)
T
tianxin04 已提交
208 209 210 211 212 213

            token_seq = [self.cls_id] + left_tokens + [self.sep_id] + \
                    right_tokens + [self.sep_id]
            if len(token_seq) > self.max_seq_len:
                miss_num += 1
                continue
Y
Yibing Liu 已提交
214 215
            type_seq = [0] * (len(left_tokens) + 2) + [1] * (len(right_tokens) +
                                                             1)
T
tianxin04 已提交
216
            pos_seq = range(len(token_seq))
Y
Yibing Liu 已提交
217 218 219
            seg_label_seq = [-1] + left_seg_labels + [-1] + right_seg_labels + [
                -1
            ]
T
tianxin04 已提交
220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274

            assert len(token_seq) == len(type_seq) == len(pos_seq) == len(seg_label_seq), \
                    "[ERROR]len(src_id) == lne(sent_id) == len(pos_id) must be True"
            neg_samples.append([token_seq, type_seq, pos_seq, 0, seg_label_seq])

        return neg_samples, miss_num

    def mixin_negtive_samples(self, pos_sample_generator, buffer=1000):
        """ 1. generate negtive samples by randomly group sentence_1 and sentence_2 of positive samples
            2. combine negtive samples and positive samples
            
            Args:
                pos_sample_generator: a generator producing a parsed positive sample, which is a list: [token_ids, sent_ids, pos_ids, 1]

            Returns:
                sample: one sample from shuffled positive samples and negtive samples
        """
        pos_samples = []
        num_total_miss = 0
        pos_sample_num = 0
        try:
            while True:
                while len(pos_samples) < buffer:
                    pos_sample = next(pos_sample_generator)
                    label = pos_sample[3]
                    assert label == 1, "positive sample's label must be 1"
                    pos_samples.append(pos_sample)
                    pos_sample_num += 1

                neg_samples, miss_num = self.random_pair_neg_samples(
                    pos_samples)
                num_total_miss += miss_num
                samples = pos_samples + neg_samples
                pos_samples = []
                np.random.shuffle(samples)
                for sample in samples:
                    yield sample
        except StopIteration:
            print("stopiteration: reach end of file")
            if len(pos_samples) == 1:
                yield pos_samples[0]
            elif len(pos_samples) == 0:
                yield None
            else:
                neg_samples, miss_num = self.random_pair_neg_samples(
                    pos_samples)
                num_total_miss += miss_num
                samples = pos_samples + neg_samples
                pos_samples = []
                np.random.shuffle(samples)
                for sample in samples:
                    yield sample
            print("miss_num:%d\tideal_total_sample_num:%d\tmiss_rate:%f" %
                  (num_total_miss, pos_sample_num * 2,
                   num_total_miss / (pos_sample_num * 2)))
C
chenxuyi 已提交
275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294
    
    def shuffle_samples(self, sample_generator, buffer=1000):
        samples = []
        try:
            while True:
                while len(samples) < buffer:
                    sample = next(sample_generator)
                    samples.append(sample)
                np.random.shuffle(samples)
                for sample in samples:
                    yield sample
                samples = []
        except StopIteration:
            print("stopiteration: reach end of file")
            if len(samples) == 0:
                yield None
            else:
                np.random.shuffle(samples)
                for sample in samples:
                    yield sample
T
tianxin04 已提交
295 296 297 298 299 300 301 302 303

    def data_generator(self):
        """
        data_generator
        """
        def wrapper():
            def reader():
                for epoch in range(self.epoch):
                    self.current_epoch = epoch + 1
C
chenxuyi 已提交
304 305
                    files = self.files
                    #during training, data are sliced by trainers
T
tianxin04 已提交
306
                    if self.shuffle_files:
C
chenxuyi 已提交
307 308 309 310 311 312 313
                        start = epoch * self.total_file
                        end = start + self.total_file
                        files = [file_ for index, file_ in enumerate(self.files[start:end]) \
                            if index % self.trainer_nums == self.trainer_id]
                    
                    for index, file_ in enumerate(files):
                        file_, mask_word_prob = file_.strip().split("\t")
T
tianxin04 已提交
314
                        mask_word = (np.random.random() < float(mask_word_prob))
C
chenxuyi 已提交
315 316
                        self.current_file_index = (index + 1) * self.trainer_nums
                        self.current_file = file_
T
tianxin04 已提交
317 318 319 320 321
                        if mask_word:
                            self.mask_type = "mask_word"
                        else:
                            self.mask_type = "mask_char"

C
chenxuyi 已提交
322 323 324 325 326 327 328 329 330 331
                        sample_generator = self.read_file(file_)
                        if not self.is_test:
                            if self.generate_neg_sample:
                                sample_generator = self.mixin_negtive_samples(
                                    sample_generator)
                            else:
                                #shuffle buffered sample
                                sample_generator = self.shuffle_samples(
                                    sample_generator)

T
tianxin04 已提交
332 333 334 335 336 337 338 339 340 341 342
                        for sample in sample_generator:
                            if sample is None:
                                continue
                            sample.append(mask_word)
                            yield sample

            def batch_reader(reader, batch_size):
                batch, total_token_num, max_len = [], 0, 0
                for parsed_line in reader():
                    token_ids, sent_ids, pos_ids, label, seg_labels, mask_word = parsed_line
                    max_len = max(max_len, len(token_ids))
C
chenxuyi 已提交
343 344 345 346 347
                    if self.in_tokens:
                        to_append = (len(batch) + 1) * max_len <= batch_size
                    else:
                        to_append = len(batch) < batch_size
                    if to_append:
T
tianxin04 已提交
348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367
                        batch.append(parsed_line)
                        total_token_num += len(token_ids)
                    else:
                        yield batch, total_token_num
                        batch, total_token_num, max_len = [parsed_line], len(
                            token_ids), len(token_ids)

                if len(batch) > 0:
                    yield batch, total_token_num

            for batch_data, total_token_num in batch_reader(reader,
                                                            self.batch_size):
                yield prepare_batch_data(
                    batch_data,
                    total_token_num,
                    voc_size=self.voc_size,
                    pad_id=self.pad_id,
                    cls_id=self.cls_id,
                    sep_id=self.sep_id,
                    mask_id=self.mask_id,
Y
Yibing Liu 已提交
368
                    return_input_mask=True,
T
tianxin04 已提交
369 370 371 372 373 374 375 376
                    return_max_len=False,
                    return_num_token=False)

        return wrapper


if __name__ == "__main__":
    pass