batching.py 7.8 KB
Newer Older
T
tianxin04 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
#   Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Mask, padding and batching."""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import numpy as np

C
cclauss 已提交
22 23
from six.moves import xrange

T
format  
tianxin04 已提交
24 25 26 27 28 29 30 31 32

def mask(batch_tokens,
         seg_labels,
         mask_word_tags,
         total_token_num,
         vocab_size,
         CLS=1,
         SEP=2,
         MASK=3):
T
tianxin04 已提交
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102
    """
    Add mask for batch_tokens, return out, mask_label, mask_pos;
    Note: mask_pos responding the batch_tokens after padded;
    """
    max_len = max([len(sent) for sent in batch_tokens])
    mask_label = []
    mask_pos = []
    prob_mask = np.random.rand(total_token_num)
    # Note: the first token is [CLS], so [low=1]
    replace_ids = np.random.randint(1, high=vocab_size, size=total_token_num)
    pre_sent_len = 0
    prob_index = 0
    for sent_index, sent in enumerate(batch_tokens):
        mask_flag = False
        mask_word = mask_word_tags[sent_index]
        prob_index += pre_sent_len
        if mask_word:
            beg = 0
            for token_index, token in enumerate(sent):
                seg_label = seg_labels[sent_index][token_index]
                if seg_label == 1:
                    continue
                if beg == 0:
                    if seg_label != -1:
                        beg = token_index
                    continue

                prob = prob_mask[prob_index + beg]
                if prob > 0.15:
                    pass
                else:
                    for index in xrange(beg, token_index):
                        prob = prob_mask[prob_index + index]
                        base_prob = 1.0
                        if index == beg:
                            base_prob = 0.15
                        if base_prob * 0.2 < prob <= base_prob:
                            mask_label.append(sent[index])
                            sent[index] = MASK
                            mask_flag = True
                            mask_pos.append(sent_index * max_len + index)
                        elif base_prob * 0.1 < prob <= base_prob * 0.2:
                            mask_label.append(sent[index])
                            sent[index] = replace_ids[prob_index + index]
                            mask_flag = True
                            mask_pos.append(sent_index * max_len + index)
                        else:
                            mask_label.append(sent[index])
                            mask_pos.append(sent_index * max_len + index)

                if seg_label == -1:
                    beg = 0
                else:
                    beg = token_index
        else:
            for token_index, token in enumerate(sent):
                prob = prob_mask[prob_index + token_index]
                if prob > 0.15:
                    continue
                elif 0.03 < prob <= 0.15:
                    # mask
                    if token != SEP and token != CLS:
                        mask_label.append(sent[token_index])
                        sent[token_index] = MASK
                        mask_flag = True
                        mask_pos.append(sent_index * max_len + token_index)
                elif 0.015 < prob <= 0.03:
                    # random replace
                    if token != SEP and token != CLS:
                        mask_label.append(sent[token_index])
T
format  
tianxin04 已提交
103 104
                        sent[token_index] = replace_ids[prob_index +
                                                        token_index]
T
tianxin04 已提交
105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126
                        mask_flag = True
                        mask_pos.append(sent_index * max_len + token_index)
                else:
                    # keep the original token
                    if token != SEP and token != CLS:
                        mask_label.append(sent[token_index])
                        mask_pos.append(sent_index * max_len + token_index)

        pre_sent_len = len(sent)

    mask_label = np.array(mask_label).astype("int64").reshape([-1, 1])
    mask_pos = np.array(mask_pos).astype("int64").reshape([-1, 1])
    return batch_tokens, mask_label, mask_pos


def prepare_batch_data(insts,
                       total_token_num,
                       voc_size=0,
                       pad_id=None,
                       cls_id=None,
                       sep_id=None,
                       mask_id=None,
Y
Yibing Liu 已提交
127
                       return_input_mask=True,
T
tianxin04 已提交
128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151
                       return_max_len=True,
                       return_num_token=False):

    batch_src_ids = [inst[0] for inst in insts]
    batch_sent_ids = [inst[1] for inst in insts]
    batch_pos_ids = [inst[2] for inst in insts]
    labels = [inst[3] for inst in insts]
    labels = np.array(labels).astype("int64").reshape([-1, 1])
    seg_labels = [inst[4] for inst in insts]
    mask_word_tags = [inst[5] for inst in insts]

    # First step: do mask without padding
    assert mask_id >= 0, "[FATAL] mask_id must >= 0"
    out, mask_label, mask_pos = mask(
        batch_src_ids,
        seg_labels,
        mask_word_tags,
        total_token_num,
        vocab_size=voc_size,
        CLS=cls_id,
        SEP=sep_id,
        MASK=mask_id)

    # Second step: padding
Y
Yibing Liu 已提交
152 153
    src_id, self_input_mask = pad_batch_data(
        out, pad_idx=pad_id, return_input_mask=True)
T
tianxin04 已提交
154 155 156
    pos_id = pad_batch_data(batch_pos_ids, pad_idx=pad_id)
    sent_id = pad_batch_data(batch_sent_ids, pad_idx=pad_id)

T
format  
tianxin04 已提交
157
    return_list = [
Y
Yibing Liu 已提交
158
        src_id, pos_id, sent_id, self_input_mask, mask_label, mask_pos, labels
T
format  
tianxin04 已提交
159
    ]
T
tianxin04 已提交
160 161 162 163 164 165 166

    return return_list


def pad_batch_data(insts,
                   pad_idx=0,
                   return_pos=False,
Y
Yibing Liu 已提交
167
                   return_input_mask=False,
T
tianxin04 已提交
168
                   return_max_len=False,
169 170
                   return_num_token=False,
                   return_seq_lens=False):
T
tianxin04 已提交
171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192
    """
    Pad the instances to the max sequence length in batch, and generate the
    corresponding position data and attention bias.
    """
    return_list = []
    max_len = max(len(inst) for inst in insts)
    # Any token included in dict can be used to pad, since the paddings' loss
    # will be masked out by weights and make no effect on parameter gradients.

    inst_data = np.array(
        [inst + list([pad_idx] * (max_len - len(inst))) for inst in insts])
    return_list += [inst_data.astype("int64").reshape([-1, max_len, 1])]

    # position data
    if return_pos:
        inst_pos = np.array([
            list(range(0, len(inst))) + [pad_idx] * (max_len - len(inst))
            for inst in insts
        ])

        return_list += [inst_pos.astype("int64").reshape([-1, max_len, 1])]

Y
Yibing Liu 已提交
193
    if return_input_mask:
T
tianxin04 已提交
194
        # This is used to avoid attention on paddings.
Y
Yibing Liu 已提交
195 196 197 198
        input_mask_data = np.array([[1] * len(inst) + [0] *
                                    (max_len - len(inst)) for inst in insts])
        input_mask_data = np.expand_dims(input_mask_data, axis=-1)
        return_list += [input_mask_data.astype("float32")]
T
tianxin04 已提交
199 200 201 202 203 204 205 206 207 208

    if return_max_len:
        return_list += [max_len]

    if return_num_token:
        num_token = 0
        for inst in insts:
            num_token += len(inst)
        return_list += [num_token]

209 210
    if return_seq_lens:
        seq_lens = np.array([len(inst) for inst in insts])
C
chenxuyi 已提交
211
        return_list += [seq_lens.astype("int64").reshape([-1])]
212

T
tianxin04 已提交
213 214 215 216
    return return_list if len(return_list) > 1 else return_list[0]


if __name__ == "__main__":
T
format  
tianxin04 已提交
217

T
tianxin04 已提交
218
    pass