distill_chnsentocorp.py 7.0 KB
Newer Older
C
chenxuyi 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
import re
import time
from random import random
from functools import reduce, partial
import logging

import numpy as np
import multiprocessing

import paddle
import paddle.fluid as F
import paddle.fluid.layers as L
from propeller import log
import propeller.paddle as propeller
from propeller.paddle.data import Dataset

from optimization import optimization
import utils.data

log.setLevel(logging.DEBUG)

class ClassificationBowModel(propeller.train.Model):
    """propeller Model wraper for paddle-ERNIE """
    def __init__(self, config, mode, run_config):
        self.config = config
        self.mode = mode
        self.run_config = run_config
        self._param_initializer = F.initializer.TruncatedNormal(
            scale=config.initializer_range)
        self._emb_dtype = "float32"
        self._word_emb_name = "word_embedding"

    def forward(self, features):
        text_ids_a, = features

        def bow(ids):
            embed = L.embedding(
                input=ids,
                size=[self.config.vocab_size, self.config.emb_size],
                dtype=self._emb_dtype,
                param_attr=F.ParamAttr(
                    name=self._word_emb_name, initializer=self._param_initializer),
                is_sparse=False)

            zero = L.fill_constant(shape=[1], dtype='int64', value=0)
            pad = L.cast(L.logical_not(L.equal(ids, zero)), 'float32')
            sumed = L.reduce_sum(embed * pad, dim=1)
            sumed = L.softsign(sumed)
            return sumed

        sumed = bow(text_ids_a)

        fced = L.fc(
            input=sumed,
            size=self.config.emb_size,
            act='tanh',
            param_attr=F.ParamAttr(
                name="middle_fc.w_0", initializer=self._param_initializer),
            bias_attr="middle_fc.b_0")

        logits = L.fc(
            input=fced,
            size=self.config.num_label,
            act=None,
            param_attr=F.ParamAttr(
                name="pooler_fc.w_0", initializer=self._param_initializer),
            bias_attr="pooler_fc.b_0")


        if self.mode is propeller.RunMode.PREDICT:
            probs = L.softmax(logits)
            return probs
        else:
            return logits


    def loss(self, predictions, labels):
        labels = L.softmax(labels)
        loss = L.softmax_with_cross_entropy(predictions, labels, soft_label=True)
        loss = L.mean(loss)
        return loss

    def backward(self, loss):
        scheduled_lr, _ = optimization(
            loss=loss,
            warmup_steps=int(self.run_config.max_steps * self.config.warmup_proportion),
            num_train_steps=self.run_config.max_steps,
            learning_rate=self.config.learning_rate,
            train_program=F.default_main_program(), 
            startup_prog=F.default_startup_program(),
            weight_decay=self.config.weight_decay,
            scheduler="linear_warmup_decay",)
        propeller.summary.scalar('lr', scheduled_lr)


    def metrics(self, predictions, labels):
        predictions = L.argmax(predictions, axis=1)
        labels = L.argmax(labels, axis=1)
        #predictions = L.unsqueeze(predictions, axes=[1])
        acc = propeller.metrics.Acc(labels, predictions)
        #auc = propeller.metrics.Auc(labels, predictions)
        return {'acc': acc}

if __name__ == '__main__':
C
chenxuyi 已提交
120
    parser = propeller.ArgumentParser('Distill model with Paddle')
C
chenxuyi 已提交
121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193
    parser.add_argument('--max_seqlen', type=int, default=128)
    parser.add_argument('--vocab_file', type=str, required=True)
    parser.add_argument('--unsupervise_data_dir', type=str, required=True)
    parser.add_argument('--data_dir', type=str)
    args = parser.parse_args()
    run_config = propeller.parse_runconfig(args)
    hparams = propeller.parse_hparam(args)

    vocab = {j.strip().split(b'\t')[0].decode('utf8'): i for i, j in enumerate(open(args.vocab_file, 'rb'))}
    unk_id = vocab['[UNK]']

    char_tokenizer = utils.data.CharTokenizer(vocab.keys())
    space_tokenizer = utils.data.SpaceTokenizer(vocab.keys())

    supervise_feature_column = propeller.data.FeatureColumns([
        propeller.data.TextColumn('text_a', unk_id=unk_id, vocab_dict=vocab, tokenizer=space_tokenizer),
        propeller.data.LabelColumn('label'),
    ])

    def before(text_a, label):
        sentence_a = text_a[: args.max_seqlen]
        return sentence_a, label

    def after(sentence_a, label):
        batch_size = sentence_a.shape[0]
        onehot_label = np.zeros([batch_size, hparams.num_label], dtype=np.float32)
        onehot_label[np.arange(batch_size), label] = 9999.
        sentence_a, = utils.data.expand_dims(sentence_a)
        return sentence_a, onehot_label


    train_ds = supervise_feature_column.build_dataset('train', data_dir=os.path.join(args.data_dir, 'train'), shuffle=True, repeat=True, use_gz=False) \
                                   .map(before) \
                                   .padded_batch(hparams.batch_size, (0, 0)) \
                                   .map(after) \

    unsup_train_ds = supervise_feature_column.build_dataset('unsup_train', data_dir=args.unsupervise_data_dir, shuffle=True, repeat=True, use_gz=False) \
                                   .map(before) \
                                   .padded_batch(hparams.batch_size, (0, 0)) \
                                   .map(after) 

    dev_ds = supervise_feature_column.build_dataset('dev', data_dir=os.path.join(args.data_dir, 'dev'), shuffle=False, repeat=False, use_gz=False) \
                                   .map(before) \
                                   .padded_batch(hparams.batch_size, (0, 0)) \
                                   .map(after)

    train_ds = utils.data.interleave(train_ds, unsup_train_ds)

    shapes = ([-1, args.max_seqlen, 1], [-1, hparams.num_label]) 
    types = ('int64', 'float32')

    train_ds.data_shapes = shapes
    train_ds.data_types = types

    dev_ds.data_shapes = shapes
    dev_ds.data_types = types

    '''
    from tqdm import tqdm
    for slots in tqdm(train_ds):
        pass
    '''

    best_exporter = propeller.train.exporter.BestExporter(os.path.join(run_config.model_dir, 'best'), cmp_fn=lambda old, new: new['dev']['acc'] > old['dev']['acc'])
    propeller.train.train_and_eval(
            model_class_or_model_fn=ClassificationBowModel, 
            params=hparams, 
            run_config=run_config, 
            train_dataset=train_ds, 
            eval_dataset={'dev': dev_ds}, 
            exporters=[best_exporter])
    print('dev_acc3\t%.5f' % (best_exporter._best['dev']['acc']))