decode.py 14.0 KB
Newer Older
M
Meiyim 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.


from __future__ import division
from __future__ import absolute_import
from __future__ import print_function
from __future__ import unicode_literals

import sys
M
Meiyim 已提交
22
import re
M
Meiyim 已提交
23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84
import argparse
import logging
import json
import numpy as np
from collections import namedtuple

import paddle.fluid as F
import paddle.fluid.layers as L
import paddle.fluid.dygraph as D

from ernie.modeling_ernie import ErnieModel, ErnieModelForPretraining
from ernie.modeling_ernie import _build_linear, _build_ln, append_name
from ernie.tokenizing_ernie import ErnieTokenizer

from experimental.seq2seq.modeling_ernie_gen import ErnieModelForGeneration

from propeller import log
import propeller.paddle as propeller

logging.getLogger().handlers[0]=log.handlers[0]
logging.getLogger().setLevel(logging.DEBUG)
log = logging.getLogger() 

@np.vectorize
def rev_lookup(i):
    return rev_dict[i]


def gen_bias(encoder_inputs, decoder_inputs, step):
    decoder_bsz, decoder_seqlen = decoder_inputs.shape[:2]
    attn_bias = L.reshape(L.range(0, decoder_seqlen, 1, dtype='float32') + 1, [1, -1, 1])
    decoder_bias = L.cast((L.matmul(attn_bias, 1. / attn_bias, transpose_y=True) >= 1.) , 'float32') #[1, 1, decoderlen, decoderlen]
    encoder_bias = L.unsqueeze(L.cast(L.ones_like(encoder_inputs), 'float32'), [1]) #[bsz, 1, encoderlen]
    encoder_bias = L.expand(encoder_bias, [1,decoder_seqlen, 1])           #[bsz,decoderlen, encoderlen]
    decoder_bias = L.expand(decoder_bias, [decoder_bsz, 1, 1])              #[bsz, decoderlen, decoderlen]
    if step > 0: 
        bias = L.concat([encoder_bias, L.ones([decoder_bsz, decoder_seqlen, step], 'float32'), decoder_bias], -1)
    else:
        bias = L.concat([encoder_bias, decoder_bias], -1)
    return bias


#def make_data(tokenizer, inputs, max_encode_len):
#    all_ids, all_sids = [], []
#    for i in inputs:
#        q_ids, q_sids = tokenizer.build_for_ernie(
#                np.array(
#                    tokenizer.convert_tokens_to_ids(i.split(' '))[: max_encode_len-2],
#                    dtype=np.int64
#                    )
#                )
#        all_ids.append(q_ids)
#        all_sids.append(q_sids)
#    ml = max(map(len, all_ids))
#    all_ids = [np.pad(i, [0, ml-len(i)], mode='constant')for i in all_ids]
#    all_sids = [np.pad(i, [0, ml-len(i)], mode='constant')for i in all_sids]
#    all_ids = np.stack(all_ids, 0)
#    all_sids = np.stack(all_sids, 0)
#    return all_ids, all_sids


@D.no_grad
M
Meiyim 已提交
85
def greedy_search_infilling(model, q_ids, q_sids, sos_id, eos_id, attn_id, max_encode_len=640, max_decode_len=100, tgt_type_id=3):
M
Meiyim 已提交
86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107
    model.eval()
    #log.debug(q_ids.numpy().tolist())
    _, logits, info = model(q_ids, q_sids)
    gen_ids = L.argmax(logits, -1)
    d_batch, d_seqlen = q_ids.shape
    seqlen = L.reduce_sum(L.cast(q_ids != 0, 'int64'), 1, keep_dim=True)
    log.debug(seqlen.numpy())
    log.debug(d_seqlen)
    has_stopped = np.zeros([d_batch], dtype=np.bool) 
    gen_seq_len = np.zeros([d_batch], dtype=np.int64)
    output_ids = []

    past_cache = info['caches']

    cls_ids =  L.ones([d_batch], dtype='int64') * sos_id
    attn_ids = L.ones([d_batch], dtype='int64') * attn_id
    ids = L.stack([cls_ids, attn_ids], -1)
    for step in range(max_decode_len):
        log.debug('decode step %d' % step)
        bias = gen_bias(q_ids, ids, step)
        pos_ids = D.to_variable(np.tile(np.array([[step, step + 1]], dtype=np.int64), [d_batch, 1]))
        pos_ids += seqlen
M
Meiyim 已提交
108
        _, logits, info = model(ids, L.ones_like(ids) * tgt_type_id, pos_ids=pos_ids, attn_bias=bias, past_cache=past_cache)
M
Meiyim 已提交
109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146
        gen_ids = L.argmax(logits, -1)

        past_cached_k, past_cached_v = past_cache
        cached_k, cached_v = info['caches']
        cached_k = [L.concat([pk, k[:, :1, :]], 1) for pk, k in zip(past_cached_k, cached_k)] # concat cached 
        cached_v = [L.concat([pv, v[:, :1, :]], 1) for pv, v in zip(past_cached_v, cached_v)]
        past_cache = (cached_k, cached_v)

        gen_ids = gen_ids[:, 1]
        ids = L.stack([gen_ids, attn_ids], 1)

        gen_ids = gen_ids.numpy()
        has_stopped |= (gen_ids == eos_id).astype(np.bool)
        gen_seq_len += (1 - has_stopped.astype(np.int64))
        output_ids.append(gen_ids.tolist())
        if has_stopped.all():
            #log.debug('exit because all done')
            break
        #if step == 1: break
    output_ids = np.array(output_ids).transpose([1, 0])
    return output_ids


BeamSearchState = namedtuple('BeamSearchState', ['log_probs', 'lengths', 'finished'])
BeamSearchOutput = namedtuple('BeamSearchOutput', ['scores', 'predicted_ids', 'beam_parent_ids'])


def log_softmax(x):
    e_x = np.exp(x - np.max(x))
    return np.log(e_x / e_x.sum())


def mask_prob(p, onehot_eos, finished):
    is_finished = L.cast(L.reshape(finished, [-1, 1]) != 0, 'float32')
    p = is_finished * (1. - L.cast(onehot_eos, 'float32')) * -9999. + (1. - is_finished) * p
    return p


M
Meiyim 已提交
147 148
def hyp_score(log_probs, length, length_penalty):
    lp = L.pow((5.+L.cast(length, 'float32')) / 6., length_penalty)
M
Meiyim 已提交
149 150 151
    return log_probs / lp


M
Meiyim 已提交
152
def beam_search_step(state, logits, eos_id, beam_width, is_first_step, length_penalty):
M
Meiyim 已提交
153 154 155 156
    """logits.shape == [B*W, V]"""
    _, vocab_size = logits.shape

    bsz, beam_width = state.log_probs.shape
M
Meiyim 已提交
157
    onehot_eos = L.cast(F.one_hot(L.ones([1], 'int64') * eos_id, vocab_size), 'int64') #[1, V]
M
Meiyim 已提交
158 159 160 161 162

    probs = L.log(L.softmax(logits)) #[B*W, V]
    probs = mask_prob(probs, onehot_eos, state.finished) #[B*W, V]
    allprobs = L.reshape(state.log_probs, [-1, 1]) + probs #[B*W, V]

M
Meiyim 已提交
163 164 165
    not_finished = 1 - L.reshape(state.finished, [-1, 1]) #[B*W,1]
    not_eos = 1 - onehot_eos
    length_to_add = not_finished * not_eos   #[B*W,V]
M
Meiyim 已提交
166 167 168 169
    alllen = L.reshape(state.lengths, [-1, 1]) + length_to_add

    allprobs = L.reshape(allprobs, [-1, beam_width * vocab_size])
    alllen = L.reshape(alllen, [-1, beam_width * vocab_size])
M
Meiyim 已提交
170
    allscore = hyp_score(allprobs, alllen, length_penalty)
M
Meiyim 已提交
171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187
    if is_first_step:
        allscore = L.reshape(allscore, [bsz, beam_width, -1])[:,0,:] # first step only consiter beam 0
    scores, idx = L.topk(allscore, k=beam_width) #[B, W]
    next_beam_id = idx // vocab_size #[B, W]
    next_word_id = idx % vocab_size

    gather_idx = L.concat([L.where(idx!=-1)[:, :1], L.reshape(idx, [-1, 1])], 1)
    next_probs = L.reshape(L.gather_nd(allprobs, gather_idx), idx.shape)
    next_len = L.reshape(L.gather_nd(alllen, gather_idx), idx.shape)

    gather_idx = L.concat([L.where(next_beam_id!=-1)[:, :1], L.reshape(next_beam_id, [-1, 1])], 1)
    next_finished = L.reshape(L.gather_nd(state.finished, gather_idx), state.finished.shape) #[gather new beam state according to new beam id]
    #log.debug(gather_idx.numpy())
    #log.debug(state.finished.numpy())
    #log.debug(next_finished.numpy())

    next_finished += L.cast(next_word_id==eos_id, 'int64')
M
Meiyim 已提交
188
    next_finished = L.cast(next_finished > 0, 'int64')
M
Meiyim 已提交
189 190 191 192 193 194 195 196 197 198

    #log.debug(next_word_id.numpy())
    #log.debug(next_beam_id.numpy())
    next_state = BeamSearchState(log_probs=next_probs, lengths=next_len, finished=next_finished)
    output = BeamSearchOutput(scores=scores, predicted_ids=next_word_id, beam_parent_ids=next_beam_id)

    return output, next_state


@D.no_grad
M
Meiyim 已提交
199
def beam_search_infilling(model, q_ids, q_sids, sos_id, eos_id, attn_id, max_encode_len=640, max_decode_len=100, beam_width=5, tgt_type_id=3, length_penalty=1.0):
M
Meiyim 已提交
200 201 202 203 204 205 206 207 208 209 210
    model.eval()
    #log.debug(q_ids.numpy().tolist())
    _, __, info = model(q_ids, q_sids)
    d_batch, d_seqlen = q_ids.shape

    state = BeamSearchState(
            log_probs=L.zeros([d_batch, beam_width], 'float32'), 
            lengths=L.zeros([d_batch, beam_width], 'int64'), 
            finished=L.zeros([d_batch, beam_width], 'int64'))
    outputs = []

M
Meiyim 已提交
211 212 213 214 215 216
    def reorder_(t, parent_id):
        """reorder cache according to parent beam id"""
        gather_idx = L.where(parent_id!=-1)[:, 0] * beam_width + L.reshape(parent_id, [-1]) 
        t = L.gather(t, gather_idx) 
        return t

M
Meiyim 已提交
217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238
    def tile_(t, times):
        _shapes = list(t.shape[1:])
        ret = L.reshape(L.expand(L.unsqueeze(t, [1]), [1, times,] + [1,] * len(_shapes)), [-1,] + _shapes)
        return ret

    cached_k, cached_v = info['caches']
    cached_k = [tile_(k, beam_width)for k in cached_k]
    cached_v = [tile_(v, beam_width)for v in cached_v]
    past_cache = (cached_k, cached_v)

    q_ids = tile_(q_ids, beam_width)
    seqlen = L.reduce_sum(L.cast(q_ids != 0, 'int64'), 1, keep_dim=True)
    #log.debug(q_ids.shape)

    cls_ids =  L.ones([d_batch * beam_width], dtype='int64') * sos_id
    attn_ids = L.ones([d_batch * beam_width], dtype='int64') * attn_id # SOS
    ids = L.stack([cls_ids, attn_ids], -1)
    for step in range(max_decode_len):
        #log.debug('decode step %d' % step)
        bias = gen_bias(q_ids, ids, step)
        pos_ids = D.to_variable(np.tile(np.array([[step, step + 1]], dtype=np.int64), [d_batch * beam_width, 1]))
        pos_ids += seqlen
M
Meiyim 已提交
239
        _, logits, info = model(ids, L.ones_like(ids) * tgt_type_id, pos_ids=pos_ids, attn_bias=bias, past_cache=past_cache)
M
Meiyim 已提交
240

M
Meiyim 已提交
241 242 243 244 245 246 247 248
        
        output, state = beam_search_step(state, logits[:, 1], 
                eos_id=eos_id, 
                beam_width=beam_width, 
                is_first_step=(step==0), 
                length_penalty=length_penalty)
        outputs.append(output)

M
Meiyim 已提交
249 250
        past_cached_k, past_cached_v = past_cache
        cached_k, cached_v = info['caches']
M
Meiyim 已提交
251 252
        cached_k = [reorder_(L.concat([pk, k[:, :1, :]], 1), output.beam_parent_ids) for pk, k in zip(past_cached_k, cached_k)] # concat cached 
        cached_v = [reorder_(L.concat([pv, v[:, :1, :]], 1), output.beam_parent_ids) for pv, v in zip(past_cached_v, cached_v)]
M
Meiyim 已提交
253
        past_cache = (cached_k, cached_v)
M
Meiyim 已提交
254 255


M
Meiyim 已提交
256 257 258 259 260 261 262 263 264 265 266 267 268
        pred_ids_flatten = L.reshape(output.predicted_ids, [d_batch * beam_width])
        ids = L.stack([pred_ids_flatten, attn_ids], 1)

        if state.finished.numpy().all():
            #log.debug('exit because all done')
            break
        #if step == 1: break

    final_ids = L.stack([o.predicted_ids for o in outputs], 0)
    final_parent_ids = L.stack([o.beam_parent_ids for o in outputs], 0)
    final_ids = L.gather_tree(final_ids, final_parent_ids)[:,:,0] #pick best beam
    final_ids = L.transpose(L.reshape(final_ids, [-1, d_batch * 1]), [1, 0])
    return final_ids
M
Meiyim 已提交
269 270
    
en_patten = re.compile(r'^[a-zA-Z0-9]*$')
M
Meiyim 已提交
271 272 273 274 275

def post_process(token):
    if token.startswith('##'):
        ret = token[2:]
    else:
M
Meiyim 已提交
276 277 278 279
        if en_patten.match(token):
            ret = ' ' + token
        else:
            ret = token
M
Meiyim 已提交
280
    return ret
M
Meiyim 已提交
281

M
Meiyim 已提交
282 283 284 285 286 287 288 289

if __name__ == '__main__':
    parser = argparse.ArgumentParser('seq2seq model with ERNIE')
    parser.add_argument('--from_pretrained', type=str, required=True, help='pretrained model directory or tag')
    parser.add_argument('--bsz', type=int, default=8, help='batchsize')
    parser.add_argument('--max_encode_len', type=int, default=640)
    parser.add_argument('--max_decode_len', type=int, default=120)
    parser.add_argument('--tgt_type_id', type=int, default=3)
M
Meiyim 已提交
290 291 292
    parser.add_argument('--beam_width', type=int, default=5)
    parser.add_argument('--attn_token', type=str, default='[ATTN]', help='if [ATTN] not in vocab, you can specified [MAKK] as attn-token')
    parser.add_argument('--length_penalty', type=float, default=1.0)
M
Meiyim 已提交
293 294 295 296 297 298 299 300 301 302 303 304 305
    parser.add_argument('--save_dir', type=str, required=True, help='model dir to be loaded')

    args = parser.parse_args()

    place = F.CUDAPlace(D.parallel.Env().dev_id)
    D.guard(place).__enter__()

    ernie = ErnieModelForGeneration.from_pretrained(args.from_pretrained, name='')
    tokenizer = ErnieTokenizer.from_pretrained(args.from_pretrained, mask_token=None)
    rev_dict = {v: k for k, v in tokenizer.vocab.items()}
    rev_dict[tokenizer.pad_id] = '' # replace [PAD]
    rev_dict[tokenizer.unk_id] = '' # replace [PAD]

M
Meiyim 已提交
306 307 308
    sd, _ = D.load_dygraph(args.save_dir)
    ernie.set_dict(sd)

M
Meiyim 已提交
309 310 311 312 313 314 315 316 317 318 319 320 321 322
    def map_fn(src_ids):
        src_ids = src_ids[: args.max_encode_len]
        src_ids, src_sids = tokenizer.build_for_ernie(src_ids)
        return (src_ids, src_sids)

    feature_column = propeller.data.FeatureColumns([
        propeller.data.TextColumn('seg_a', unk_id=tokenizer.unk_id, vocab_dict=tokenizer.vocab, tokenizer=tokenizer.tokenize),
    ])
    dataset = feature_column.build_dataset_from_stdin('predict').map(map_fn).padded_batch(args.bsz)

    for step, (encoder_ids, encoder_sids) in enumerate(dataset):
        #result_ids = greedy_search_infilling(ernie, D.to_variable(encoder_ids), D.to_variable(encoder_sids), 
        #       eos_id=tokenizer.sep_id,
        #       sos_id=tokenizer.cls_id,
M
Meiyim 已提交
323
        #       attn_id=tokenizer.vocab[args.attn_id],
M
Meiyim 已提交
324 325
        #    max_decode_len=args.max_decode_len, 
        #    max_encode_len=args.max_encode_len, 
M
Meiyim 已提交
326 327
        #    beam_width=args.beam_width,
        #    tgt_type_id=args.tgt_type_id)
M
Meiyim 已提交
328 329 330
        result_ids = beam_search_infilling(ernie, D.to_variable(encoder_ids), D.to_variable(encoder_sids), 
                eos_id=tokenizer.sep_id,
                sos_id=tokenizer.cls_id,
M
Meiyim 已提交
331
                attn_id=tokenizer.vocab[args.attn_token],
M
Meiyim 已提交
332 333
                max_decode_len=args.max_decode_len, 
                max_encode_len=args.max_encode_len, 
M
Meiyim 已提交
334
                beam_width=args.beam_width,
M
Meiyim 已提交
335
                length_penalty=args.length_penalty,
M
Meiyim 已提交
336
                tgt_type_id=args.tgt_type_id)
M
Meiyim 已提交
337 338 339 340 341 342 343

        output_str = rev_lookup(result_ids.numpy())
        for ostr in output_str.tolist():
            if '[SEP]' in ostr:
                ostr = ostr[: ostr.index('[SEP]')]
            
            ostr = ''.join(map(post_process, ostr))
M
Meiyim 已提交
344
            ostr = ostr.strip()
M
Meiyim 已提交
345 346
            print(ostr)