pretrain.py 13.4 KB
Newer Older
M
Meiyim 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
from __future__ import absolute_import
from __future__ import unicode_literals

import sys
import io
import os
import time
import numpy as np
import re
import logging
import six
from glob import glob
from functools import reduce, partial
import itertools

import paddle
import paddle.fluid as F
import paddle.fluid.layers as L
import sentencepiece as spm
import json

from tqdm import tqdm

import random as r

from ernie.modeling_ernie import ErnieModelForPretraining
from ernie.tokenizing_ernie import ErnieTokenizer
from ernie.optimization import optimization

import propeller.paddle as propeller
from propeller.paddle.data import Dataset

#import jieba
from propeller import log

log.setLevel(logging.DEBUG)
logging.getLogger().setLevel(logging.DEBUG)

if six.PY3:
    from itertools import accumulate
else:
    import operator
    def accumulate(iterable, func=operator.add, initial=None):
        'Return running totals'
        # accumulate([1,2,3,4,5]) --> 1 3 6 10 15
        # accumulate([1,2,3,4,5], initial=100) --> 100 101 103 106 110 115
        # accumulate([1,2,3,4,5], operator.mul) --> 1 2 6 24 120
        it = iter(iterable)
        total = initial
        if initial is None:
            try:
                total = next(it)
            except StopIteration:
                return
        yield total
        for element in it:
            total = func(total, element)
            yield total


def ernie_pretrain_model_fn(features, mode, params, run_config):
    """propeller Model wraper for paddle-ERNIE """
    src_ids, sent_ids, mlm_label, mask_pos, nsp_label = features

    ernie = ErnieModelForPretraining(params, name='')
    total_loss, mlm_loss, nsp_loss = ernie(src_ids, sent_ids, labels=mlm_label, mlm_pos=mask_pos, nsp_labels=nsp_label)

    metrics = None
    inf_spec = None

    propeller.summary.scalar('loss', total_loss)
    propeller.summary.scalar('nsp-loss', nsp_loss)
    propeller.summary.scalar('mlm-loss', mlm_loss)

    scheduled_lr, loss_scale_coef = optimization(
        loss=total_loss,
        warmup_steps=params['warmup_steps'],
        num_train_steps=run_config.max_steps,
        learning_rate=params['learning_rate'],
        train_program=F.default_main_program(), 
        startup_prog=F.default_startup_program(),
        weight_decay=params['weight_decay'],
        scheduler="linear_warmup_decay",
        use_fp16=params['use_fp16'],
    )

    propeller.summary.scalar('lr', scheduled_lr)
    if params['use_fp16']:
        propeller.summary.scalar('loss_scale', loss_scale_coef)
    pred = [total_loss]

    return propeller.ModelSpec(loss=total_loss, mode=mode, metrics=metrics, predictions=pred)


def truncate_sentence(seq, from_length, to_length):
    random_begin = np.random.randint(0, np.maximum(0, from_length - to_length) + 1)
    return seq[random_begin: random_begin + to_length]


def build_pair(seg_a, seg_b, max_seqlen, vocab):
    #log.debug('pair %s \n %s' % (seg_a, seg_b))
    cls_id = vocab['[CLS]']
    sep_id = vocab['[SEP]']
    a_len = len(seg_a)
    b_len = len(seg_b)
    ml = max_seqlen - 3
    half_ml = ml // 2
    if a_len > b_len:
        a_len_truncated, b_len_truncated = np.maximum(half_ml, ml - b_len), np.minimum(half_ml, b_len)
    else:
        a_len_truncated, b_len_truncated = np.minimum(half_ml, a_len), np.maximum(half_ml, ml - a_len)

    seg_a = truncate_sentence(seg_a, a_len, a_len_truncated)
    seg_b = truncate_sentence(seg_b, b_len, b_len_truncated)

    seg_a_txt, seg_a_info = seg_a[:, 0], seg_a[:, 1]
    seg_b_txt, seg_b_info = seg_b[:, 0], seg_b[:, 1]

    token_type_a = np.ones_like(seg_a_txt, dtype=np.int64) * 0
    token_type_b = np.ones_like(seg_b_txt, dtype=np.int64) * 1
    sen_emb = np.concatenate([[cls_id], seg_a_txt, [sep_id], seg_b_txt, [sep_id]], 0)
    info_emb = np.concatenate([[-1], seg_a_info, [-1], seg_b_info, [-1]], 0)
    token_type_emb = np.concatenate([[0], token_type_a, [0], token_type_b, [1]], 0)

    return sen_emb, info_emb, token_type_emb


def apply_mask(sentence, seg_info, mask_rate, vocab_size, vocab):
    pad_id = vocab['[PAD]']
    mask_id = vocab['[MASK]']
    shape = sentence.shape
    batch_size, seqlen = shape

    invalid_pos = np.where(seg_info == -1)
    seg_info += 1 #no more =1
    seg_info_flatten = seg_info.reshape([-1])
    seg_info_incr = seg_info_flatten - np.roll(seg_info_flatten, shift=1)
    seg_info = np.add.accumulate(np.array([0 if s == 0 else 1 for s in seg_info_incr])).reshape(shape)
    seg_info[invalid_pos] = -1

    u_seginfo = np.array([i for i in np.unique(seg_info) if i != -1])
    np.random.shuffle(u_seginfo)
    sample_num = max(1, int(len(u_seginfo) * mask_rate))
    u_seginfo = u_seginfo[: sample_num]
    mask = reduce(np.logical_or, [seg_info == i for i in u_seginfo])

    mask[:, 0] = False # ignore CLS head

    rand = np.random.rand(*shape)
    choose_original = rand < 0.1                   # 
    choose_random_id = (0.1 < rand) & (rand < 0.2) # 
    choose_mask_id = 0.2 < rand                    # 
    random_id = np.random.randint(1, vocab_size, size=shape)

    replace_id = mask_id * choose_mask_id + \
                 random_id * choose_random_id + \
                 sentence * choose_original

    mask_pos = np.where(mask)
    #mask_pos_flatten = list(map(lambda idx: idx[0] * seqlen + idx[1], zip(*mask_pos))) #transpose
    mask_label = sentence[mask_pos]
    sentence[mask_pos] = replace_id[mask_pos] #overwrite
    #log.debug(mask_pos_flatten)
    return sentence, np.stack(mask_pos, -1), mask_label


def make_pretrain_dataset(name, dir, vocab, hparams, args):
    gz_files = glob(dir)
    if not gz_files:
        raise ValueError('train data not found in %s' % dir)

    log.info('read from %s' % '\n'.join(gz_files))
    max_input_seqlen = args.max_seqlen 
    max_pretrain_seqlen = lambda: max_input_seqlen if r.random() > 0.15 else r.randint(1, max_input_seqlen) # short sentence rate

    def _parse_gz(record_str): # function that takes python_str as input
        ex = propeller.data.example_pb2.SequenceExample()
        ex.ParseFromString(record_str)
        doc = [np.array(f.int64_list.value, dtype=np.int64) for f in ex.feature_lists.feature_list['txt'].feature]
        doc_seg = [np.array(f.int64_list.value, dtype=np.int64) for f in ex.feature_lists.feature_list['segs'].feature]
        return doc, doc_seg

    def bb_to_segments(filename):
        ds = Dataset.from_record_file(filename).map(_parse_gz)
        iterable = iter(ds)
        def gen():
            buf, size = [], 0
            iterator = iter(ds)
            while 1:
                doc, doc_seg = next(iterator)
                for line, line_seg in zip(doc, doc_seg):
                    #line = np.array(sp_model.SampleEncodeAsIds(line, -1, 0.1), dtype=np.int64) # 0.1 means large variance on sentence piece result
                    if len(line) == 0:
                        continue
                    line = np.array(line) # 0.1 means large variance on sentence piece result
                    line_seg = np.array(line_seg)
                    size += len(line)
                    buf.append(np.stack([line, line_seg]).transpose())
                    if size > max_input_seqlen:
                        yield buf,
                        buf, size = [], 0
                if len(buf) != 0:
                    yield buf, 
                    buf, size = [], 0
        return Dataset.from_generator_func(gen)

    def sample_negative(dataset):
        def gen():
            iterator = iter(dataset)
            while True:
                chunk_a, = next(iterator)
                #chunk_b, = next(iterator)

                seqlen = max_pretrain_seqlen()
                seqlen_a = r.randint(1, seqlen)
                seqlen_b = seqlen - seqlen_a
                len_a = list(accumulate([len(c) for c in chunk_a]))
                buf_a = [c for c, l in zip(chunk_a, len_a) if l < seqlen_a] #always take the first one
                buf_b = [c for c, l in zip(chunk_a, len_a) if seqlen_a <= l < seqlen]

                if r.random() < 0.5: #pos or neg
                    label = np.int64(1)
                else:
                    label = np.int64(0)
                    buf_a, buf_b = buf_b, buf_a

                if not (len(buf_a) and len(buf_b)):
                    continue
                a = np.concatenate(buf_a)
                b = np.concatenate(buf_b)
                #log.debug(a)
                #log.debug(b)
                sample, seg_info, token_type = build_pair(a, b, args.max_seqlen, vocab) #negative sample might exceed max seqlen
                yield sample, seg_info, token_type, label

        ds = propeller.data.Dataset.from_generator_func(gen)
        return ds

    def after(sentence, seg_info, segments, label):
        batch_size, seqlen = sentence.shape
        sentence, mask_pos, mlm_label = apply_mask(sentence, seg_info, args.mask_rate, hparams.vocab_size, vocab)

        ra = r.random()
        if ra < args.check:
            print('***')
            print('\n'.join([str(j) + '\t' + '|'.join(map(str, i)) for i, j in zip(sentence.tolist(), label)]))
            print('***')
            print('\n'.join(['|'.join(map(str, i)) for i in seg_info.tolist()]))
            print('***')
            print('|'.join(map(str, mlm_label.tolist())))
            print('***')

        return sentence, segments, mlm_label, mask_pos, label

    # pretrain pipeline
    dataset = Dataset.from_list(gz_files)
    if propeller.train.distribution.status.mode == propeller.train.distribution.DistributionMode.NCCL:
        log.info('Apply sharding in distribution env')
        dataset = dataset.shard(propeller.train.distribution.status.num_replica, propeller.train.distribution.status.replica_id)
    dataset = dataset.repeat().shuffle(buffer_size=len(gz_files))

    dataset = dataset.interleave(map_fn=bb_to_segments, cycle_length=len(gz_files), block_length=1)
    dataset = dataset.shuffle(buffer_size=1000) #must shuffle to ensure negative sample randomness
    dataset = sample_negative(dataset)
    dataset = dataset.padded_batch(hparams.batch_size, (0, 0, 0, 0)).map(after)
    dataset.name = name
    return dataset


if __name__ == '__main__':
    if six.PY3:
        import io
        sys.stdout = io.TextIOWrapper(sys.stdout.buffer, encoding='utf-8')
        sys.stderr = io.TextIOWrapper(sys.stderr.buffer, encoding='utf-8')

    parser = propeller.ArgumentParser('DAN model with Paddle')
    parser.add_argument('--max_seqlen', type=int, default=256)
    parser.add_argument('--data_dir', type=str, required=True)
    parser.add_argument('--from_pretrained', type=str, default=None)
    parser.add_argument('--mask_rate', type=float, default=0.15)
    parser.add_argument('--check', type=float, default=0.)

    args = parser.parse_args()

    if not os.path.exists(args.from_pretrained):
        raise ValueError('--from_pretrained not found: %s' % args.from_pretrained)
    cfg_file_path = os.path.join(args.from_pretrained, 'ernie_config.json')
    param_path = os.path.join(args.from_pretrained, 'params')
    vocab_path = os.path.join(args.from_pretrained, 'vocab.txt')
    assert os.path.exists(cfg_file_path) and os.path.exists(param_path) and os.path.exists(vocab_path)


    hparams_cli = propeller.parse_hparam(args)
    hparams_config_file = json.loads(open(cfg_file_path).read())
    default_hparams = propeller.HParams(
        batch_size=50,
        warmup_steps=10000,
        learning_rate=1e-4,
        weight_decay=0.01,
        use_fp16=False,
    )

    hparams = default_hparams.join(propeller.HParams(**hparams_config_file)).join(hparams_cli)

    default_run_config=dict(
        max_steps=1000000,
        save_steps=10000,
        log_steps=10,
        max_ckpt=3,
        skip_steps=0,
        eval_steps=-1)

    run_config = dict(default_run_config, **json.loads(args.run_config))
    run_config = propeller.RunConfig(**run_config)

    tokenizer = ErnieTokenizer.from_pretrained(args.from_pretrained)


    train_ds = make_pretrain_dataset('train', args.data_dir,
            vocab=tokenizer.vocab, hparams=hparams, args=args)

    seq_shape = [-1, args.max_seqlen]
    ints_shape = [-1,]
    shapes = (seq_shape, seq_shape, ints_shape, [-1, 2], ints_shape) 
    types = ('int64', 'int64', 'int64', 'int64', 'int64')

    train_ds.data_shapes = shapes
    train_ds.data_types = types
    ws = None

    #varname_to_warmstart = re.compile(r'^encoder.*[wb]_0$|^.*embedding$|^.*bias$|^.*scale$|^pooled_fc.[wb]_0$')
    varname_to_warmstart = re.compile(r'.*')
    if args.from_pretrained is not None:
        warm_start_dir = os.path.join(args.from_pretrained, 'params')
        ws = propeller.WarmStartSetting(
                predicate_fn=lambda v: varname_to_warmstart.match(v.name) and os.path.exists(os.path.join(warm_start_dir, v.name)),
                from_dir=warm_start_dir
            )

    ernie_learner = propeller.Learner(ernie_pretrain_model_fn, run_config, params=hparams, warm_start_setting=ws)
    ernie_learner.train(train_ds)