ernie_v1.py 8.8 KB
Newer Older
T
tianxin04 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
#   Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Ernie model."""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
C
chenxuyi 已提交
19 20
from __future__ import unicode_literals
from __future__ import absolute_import
T
tianxin04 已提交
21 22

import json
C
chenxuyi 已提交
23
import logging
24
import six
T
tianxin04 已提交
25
import paddle.fluid as fluid
C
chenxuyi 已提交
26
from io import open
27

T
tianxin04 已提交
28 29
from model.transformer_encoder import encoder, pre_process_layer

C
chenxuyi 已提交
30
log = logging.getLogger(__name__)
T
tianxin04 已提交
31 32 33 34 35 36 37

class ErnieConfig(object):
    def __init__(self, config_path):
        self._config_dict = self._parse(config_path)

    def _parse(self, config_path):
        try:
C
chenxuyi 已提交
38
            with open(config_path, 'r', encoding='utf8') as json_file:
T
tianxin04 已提交
39 40 41 42 43 44 45 46 47 48 49 50
                config_dict = json.load(json_file)
        except Exception:
            raise IOError("Error in parsing Ernie model config file '%s'" %
                          config_path)
        else:
            return config_dict

    def __getitem__(self, key):
        return self._config_dict[key]

    def print_config(self):
        for arg, value in sorted(six.iteritems(self._config_dict)):
C
chenxuyi 已提交
51 52
            log.info('%s: %s' % (arg, value))
        log.info('------------------------------------------------')
T
tianxin04 已提交
53 54 55 56 57 58 59


class ErnieModel(object):
    def __init__(self,
                 src_ids,
                 position_ids,
                 sentence_ids,
Y
Yibing Liu 已提交
60
                 input_mask,
T
tianxin04 已提交
61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78
                 config,
                 weight_sharing=True,
                 use_fp16=False):

        self._emb_size = config['hidden_size']
        self._n_layer = config['num_hidden_layers']
        self._n_head = config['num_attention_heads']
        self._voc_size = config['vocab_size']
        self._max_position_seq_len = config['max_position_embeddings']
        self._sent_types = config['type_vocab_size']
        self._hidden_act = config['hidden_act']
        self._prepostprocess_dropout = config['hidden_dropout_prob']
        self._attention_dropout = config['attention_probs_dropout_prob']
        self._weight_sharing = weight_sharing

        self._word_emb_name = "word_embedding"
        self._pos_emb_name = "pos_embedding"
        self._sent_emb_name = "sent_embedding"
C
chenxuyi 已提交
79
        self._dtype = 'float16' if use_fp16 else 'float32'
T
tianxin04 已提交
80

C
cclauss 已提交
81
        # Initialize all weigths by truncated normal initializer, and all biases
T
tianxin04 已提交
82 83 84 85
        # will be initialized by constant zero by default.
        self._param_initializer = fluid.initializer.TruncatedNormal(
            scale=config['initializer_range'])

Y
Yibing Liu 已提交
86
        self._build_model(src_ids, position_ids, sentence_ids, input_mask)
T
tianxin04 已提交
87

Y
Yibing Liu 已提交
88
    def _build_model(self, src_ids, position_ids, sentence_ids, input_mask):
T
tianxin04 已提交
89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116
        # padding id in vocabulary must be set to 0
        emb_out = fluid.layers.embedding(
            input=src_ids,
            size=[self._voc_size, self._emb_size],
            dtype=self._dtype,
            param_attr=fluid.ParamAttr(
                name=self._word_emb_name, initializer=self._param_initializer),
            is_sparse=False)
        position_emb_out = fluid.layers.embedding(
            input=position_ids,
            size=[self._max_position_seq_len, self._emb_size],
            dtype=self._dtype,
            param_attr=fluid.ParamAttr(
                name=self._pos_emb_name, initializer=self._param_initializer))

        sent_emb_out = fluid.layers.embedding(
            sentence_ids,
            size=[self._sent_types, self._emb_size],
            dtype=self._dtype,
            param_attr=fluid.ParamAttr(
                name=self._sent_emb_name, initializer=self._param_initializer))

        emb_out = emb_out + position_emb_out
        emb_out = emb_out + sent_emb_out

        emb_out = pre_process_layer(
            emb_out, 'nd', self._prepostprocess_dropout, name='pre_encoder')

C
chenxuyi 已提交
117
        if self._dtype == 'float16':
Y
Yibing Liu 已提交
118 119 120
            input_mask = fluid.layers.cast(x=input_mask, dtype=self._dtype)
        self_attn_mask = fluid.layers.matmul(
            x=input_mask, y=input_mask, transpose_y=True)
T
tianxin04 已提交
121

Y
Yibing Liu 已提交
122
        self_attn_mask = fluid.layers.scale(
Y
Yibing Liu 已提交
123
            x=self_attn_mask, scale=10000.0, bias=-1.0, bias_after_scale=False)
T
tianxin04 已提交
124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148
        n_head_self_attn_mask = fluid.layers.stack(
            x=[self_attn_mask] * self._n_head, axis=1)
        n_head_self_attn_mask.stop_gradient = True

        self._enc_out = encoder(
            enc_input=emb_out,
            attn_bias=n_head_self_attn_mask,
            n_layer=self._n_layer,
            n_head=self._n_head,
            d_key=self._emb_size // self._n_head,
            d_value=self._emb_size // self._n_head,
            d_model=self._emb_size,
            d_inner_hid=self._emb_size * 4,
            prepostprocess_dropout=self._prepostprocess_dropout,
            attention_dropout=self._attention_dropout,
            relu_dropout=0,
            hidden_act=self._hidden_act,
            preprocess_cmd="",
            postprocess_cmd="dan",
            param_initializer=self._param_initializer,
            name='encoder')

    def get_sequence_output(self):
        return self._enc_out

Y
Yibing Liu 已提交
149
    def get_pooled_output(self):
T
tianxin04 已提交
150
        """Get the first feature of each sequence for classification"""
Y
Yibing Liu 已提交
151 152
        next_sent_feat = fluid.layers.slice(
            input=self._enc_out, axes=[1], starts=[0], ends=[1])
T
tianxin04 已提交
153 154 155 156 157 158 159 160 161
        next_sent_feat = fluid.layers.fc(
            input=next_sent_feat,
            size=self._emb_size,
            act="tanh",
            param_attr=fluid.ParamAttr(
                name="pooled_fc.w_0", initializer=self._param_initializer),
            bias_attr="pooled_fc.b_0")
        return next_sent_feat

Y
Yibing Liu 已提交
162
    def get_pretraining_output(self, mask_label, mask_pos, labels):
T
tianxin04 已提交
163 164 165 166 167
        """Get the loss & accuracy for pretraining"""

        mask_pos = fluid.layers.cast(x=mask_pos, dtype='int32')

        # extract the first token feature in each sentence
Y
Yibing Liu 已提交
168 169 170
        next_sent_feat = self.get_pooled_output()
        reshaped_emb_out = fluid.layers.reshape(
            x=self._enc_out, shape=[-1, self._emb_size])
T
tianxin04 已提交
171
        # extract masked tokens' feature
Y
Yibing Liu 已提交
172
        mask_feat = fluid.layers.gather(input=reshaped_emb_out, index=mask_pos)
T
tianxin04 已提交
173 174 175 176 177 178 179 180 181 182

        # transform: fc
        mask_trans_feat = fluid.layers.fc(
            input=mask_feat,
            size=self._emb_size,
            act=self._hidden_act,
            param_attr=fluid.ParamAttr(
                name='mask_lm_trans_fc.w_0',
                initializer=self._param_initializer),
            bias_attr=fluid.ParamAttr(name='mask_lm_trans_fc.b_0'))
C
cclauss 已提交
183
        # transform: layer norm
T
tianxin04 已提交
184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230
        mask_trans_feat = pre_process_layer(
            mask_trans_feat, 'n', name='mask_lm_trans')

        mask_lm_out_bias_attr = fluid.ParamAttr(
            name="mask_lm_out_fc.b_0",
            initializer=fluid.initializer.Constant(value=0.0))
        if self._weight_sharing:
            fc_out = fluid.layers.matmul(
                x=mask_trans_feat,
                y=fluid.default_main_program().global_block().var(
                    self._word_emb_name),
                transpose_y=True)
            fc_out += fluid.layers.create_parameter(
                shape=[self._voc_size],
                dtype=self._dtype,
                attr=mask_lm_out_bias_attr,
                is_bias=True)

        else:
            fc_out = fluid.layers.fc(input=mask_trans_feat,
                                     size=self._voc_size,
                                     param_attr=fluid.ParamAttr(
                                         name="mask_lm_out_fc.w_0",
                                         initializer=self._param_initializer),
                                     bias_attr=mask_lm_out_bias_attr)

        mask_lm_loss = fluid.layers.softmax_with_cross_entropy(
            logits=fc_out, label=mask_label)
        mean_mask_lm_loss = fluid.layers.mean(mask_lm_loss)

        next_sent_fc_out = fluid.layers.fc(
            input=next_sent_feat,
            size=2,
            param_attr=fluid.ParamAttr(
                name="next_sent_fc.w_0", initializer=self._param_initializer),
            bias_attr="next_sent_fc.b_0")

        next_sent_loss, next_sent_softmax = fluid.layers.softmax_with_cross_entropy(
            logits=next_sent_fc_out, label=labels, return_softmax=True)

        next_sent_acc = fluid.layers.accuracy(
            input=next_sent_softmax, label=labels)

        mean_next_sent_loss = fluid.layers.mean(next_sent_loss)

        loss = mean_next_sent_loss + mean_mask_lm_loss
        return next_sent_acc, mean_mask_lm_loss, loss