cls.py 20.7 KB
Newer Older
Y
Yibing Liu 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
#   Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
import types
import csv
import numpy as np
import tokenization
from batching import prepare_batch_data
21
import functools
Y
Yibing Liu 已提交
22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84

class DataProcessor(object):
    """Base class for data converters for sequence classification data sets."""

    def __init__(self,
                 data_dir,
                 vocab_path,
                 max_seq_len,
                 do_lower_case,
                 in_tokens,
                 random_seed=None):
        self.data_dir = data_dir
        self.max_seq_len = max_seq_len
        self.tokenizer = tokenization.FullTokenizer(
            vocab_file=vocab_path, do_lower_case=do_lower_case)
        self.vocab = self.tokenizer.vocab
        self.in_tokens = in_tokens

        np.random.seed(random_seed)

        self.current_train_example = -1
        self.num_examples = {'train': -1, 'dev': -1, 'test': -1}
        self.current_train_epoch = -1

    def get_train_examples(self, data_dir):
        """Gets a collection of `InputExample`s for the train set."""
        raise NotImplementedError()

    def get_dev_examples(self, data_dir):
        """Gets a collection of `InputExample`s for the dev set."""
        raise NotImplementedError()

    def get_test_examples(self, data_dir):
        """Gets a collection of `InputExample`s for prediction."""
        raise NotImplementedError()

    def get_labels(self):
        """Gets the list of labels for this data set."""
        raise NotImplementedError()

    def convert_example(self, index, example, labels, max_seq_len, tokenizer):
        """Converts a single `InputExample` into a single `InputFeatures`."""
        feature = convert_single_example(index, example, labels, max_seq_len,
                                         tokenizer)
        return feature

    def generate_instance(self, feature):
        """
        generate instance with given feature

        Args:
            feature: InputFeatures(object). A single set of features of data.
        """
        input_pos = list(range(len(feature.input_ids)))
        return [
            feature.input_ids, feature.segment_ids, input_pos, feature.label_id
        ]

    def generate_batch_data(self,
                            batch_data,
                            total_token_num,
                            voc_size=-1,
                            mask_id=-1,
85
                            return_input_mask=True,
Y
Yibing Liu 已提交
86 87 88 89 90 91 92 93 94 95
                            return_max_len=False,
                            return_num_token=False):
        return prepare_batch_data(
            batch_data,
            total_token_num,
            voc_size=-1,
            pad_id=self.vocab["[PAD]"],
            cls_id=self.vocab["[CLS]"],
            sep_id=self.vocab["[SEP]"],
            mask_id=-1,
96
            return_input_mask=True,
Y
Yibing Liu 已提交
97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180
            return_max_len=False,
            return_num_token=False)

    @classmethod
    def _read_tsv(cls, input_file, quotechar=None):
        """Reads a tab separated value file."""
        with open(input_file, "r") as f:
            reader = csv.reader(f, delimiter="\t", quotechar=quotechar)
            lines = []
            for line in reader:
                lines.append(line)
            return lines

    def get_num_examples(self, phase):
        """Get number of examples for train, dev or test."""
        if phase not in ['train', 'dev', 'test']:
            raise ValueError(
                "Unknown phase, which should be in ['train', 'dev', 'test'].")
        return self.num_examples[phase]

    def get_train_progress(self):
        """Gets progress for training phase."""
        return self.current_train_example, self.current_train_epoch

    def data_generator(self, batch_size, phase='train', epoch=1, shuffle=True):
        """
        Generate data for train, dev or test.
    
        Args:
          batch_size: int. The batch size of generated data.
          phase: string. The phase for which to generate data.
          epoch: int. Total epoches to generate data.
          shuffle: bool. Whether to shuffle examples.
        """
        if phase == 'train':
            examples = self.get_train_examples(self.data_dir)
            self.num_examples['train'] = len(examples)
        elif phase == 'dev':
            examples = self.get_dev_examples(self.data_dir)
            self.num_examples['dev'] = len(examples)
        elif phase == 'test':
            examples = self.get_test_examples(self.data_dir)
            self.num_examples['test'] = len(examples)
        else:
            raise ValueError(
                "Unknown phase, which should be in ['train', 'dev', 'test'].")

        def instance_reader():
            for epoch_index in range(epoch):
                if shuffle:
                    np.random.shuffle(examples)
                if phase == 'train':
                    self.current_train_epoch = epoch_index
                for (index, example) in enumerate(examples):
                    if phase == 'train':
                        self.current_train_example = index + 1
                    feature = self.convert_example(
                        index, example,
                        self.get_labels(), self.max_seq_len, self.tokenizer)

                    instance = self.generate_instance(feature)
                    yield instance

        def batch_reader(reader, batch_size, in_tokens):
            batch, total_token_num, max_len = [], 0, 0
            for instance in reader():
                token_ids, sent_ids, pos_ids, label = instance[:4]
                max_len = max(max_len, len(token_ids))
                if in_tokens:
                    to_append = (len(batch) + 1) * max_len <= batch_size
                else:
                    to_append = len(batch) < batch_size
                if to_append:
                    batch.append(instance)
                    total_token_num += len(token_ids)
                else:
                    yield batch, total_token_num
                    batch, total_token_num, max_len = [instance], len(
                        token_ids), len(token_ids)

            if len(batch) > 0:
                yield batch, total_token_num

        def wrapper():
181 182 183 184 185 186 187
            trainers_num = int(os.environ.get('PADDLE_TRAINERS_NUM', 1))
            trainer_id = int(os.getenv("PADDLE_TRAINER_ID", 0)) + 1
            if trainers_num > 1:
                print("start data reader (trainers_num: {}, trainer_id: {})".format(
                    trainers_num, trainer_id-1))
            get_prepared_batch_input = functools.partial(
               self.generate_batch_data,
Y
Yibing Liu 已提交
188 189
                    voc_size=-1,
                    mask_id=-1,
190
                    return_input_mask=True,
Y
Yibing Liu 已提交
191 192
                    return_max_len=False,
                    return_num_token=False)
193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212

            train_data, train_token_num, idx = None, None, 1
            for batch_data, total_token_num in batch_reader(
                    instance_reader, batch_size, self.in_tokens):
                if trainers_num > 1:
                    if idx < trainers_num:
                        if idx == trainer_id:
                            train_data, train_token_num = batch_data, total_token_num
                        idx += 1
                    else:
                        if idx == trainer_id:
                            train_data, train_token_num = batch_data, total_token_num
                        assert train_data is not None, "train data should not be None."
                        assert train_token_num is not None, "train data should not be None."
                        batch_data = get_prepared_batch_input(train_data, train_token_num)
                        yield batch_data
                        train_data, train_token_num, idx = None, None, 1
                else:
                    batch_data = get_prepared_batch_input(batch_data, total_token_num)
                    yield batch_data
Y
Yibing Liu 已提交
213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557

        return wrapper


class InputExample(object):
    """A single training/test example for simple sequence classification."""

    def __init__(self, guid, text_a, text_b=None, label=None):
        """Constructs a InputExample.

    Args:
      guid: Unique id for the example.
      text_a: string. The untokenized text of the first sequence. For single
        sequence tasks, only this sequence must be specified.
      text_b: (Optional) string. The untokenized text of the second sequence.
        Only must be specified for sequence pair tasks.
      label: (Optional) string. The label of the example. This should be
        specified for train and dev examples, but not for test examples.
    """
        self.guid = guid
        self.text_a = text_a
        self.text_b = text_b
        self.label = label


def _truncate_seq_pair(tokens_a, tokens_b, max_length):
    """Truncates a sequence pair in place to the maximum length."""

    # This is a simple heuristic which will always truncate the longer sequence
    # one token at a time. This makes more sense than truncating an equal percent
    # of tokens from each, since if one sequence is very short then each token
    # that's truncated likely contains more information than a longer sequence.
    while True:
        total_length = len(tokens_a) + len(tokens_b)
        if total_length <= max_length:
            break
        if len(tokens_a) > len(tokens_b):
            tokens_a.pop()
        else:
            tokens_b.pop()


class InputFeatures(object):
    """A single set of features of data."""

    def __init__(self, input_ids, input_mask, segment_ids, label_id):
        self.input_ids = input_ids
        self.input_mask = input_mask
        self.segment_ids = segment_ids
        self.label_id = label_id


class XnliProcessor(DataProcessor):
    """Processor for the XNLI data set."""

    def get_train_examples(self, data_dir):
        """See base class."""
        self.language = "zh"
        lines = self._read_tsv(
            os.path.join(data_dir, "multinli", "multinli.train.%s.tsv" %
                         self.language))
        examples = []
        for (i, line) in enumerate(lines):
            if i == 0:
                continue
            guid = "train-%d" % (i)
            text_a = tokenization.convert_to_unicode(line[0])
            text_b = tokenization.convert_to_unicode(line[1])
            label = tokenization.convert_to_unicode(line[2])
            if label == tokenization.convert_to_unicode("contradictory"):
                label = tokenization.convert_to_unicode("contradiction")
            examples.append(
                InputExample(
                    guid=guid, text_a=text_a, text_b=text_b, label=label))
        return examples

    def get_dev_examples(self, data_dir):
        """See base class."""
        self.language = "zh"
        lines = self._read_tsv(os.path.join(data_dir, "xnli.dev.tsv"))
        examples = []
        for (i, line) in enumerate(lines):
            if i == 0:
                continue
            guid = "dev-%d" % (i)
            language = tokenization.convert_to_unicode(line[0])
            if language != tokenization.convert_to_unicode(self.language):
                continue
            text_a = tokenization.convert_to_unicode(line[6])
            text_b = tokenization.convert_to_unicode(line[7])
            label = tokenization.convert_to_unicode(line[1])
            examples.append(
                InputExample(
                    guid=guid, text_a=text_a, text_b=text_b, label=label))
        return examples

    def get_test_examples(self, data_dir):
        """See base class."""
        self.language = "zh"
        lines = self._read_tsv(os.path.join(data_dir, "xnli.test.tsv"))
        examples = []
        for (i, line) in enumerate(lines):
            if i == 0:
                continue
            guid = "test-%d" % (i)
            language = tokenization.convert_to_unicode(line[0])
            if language != tokenization.convert_to_unicode(self.language):
                continue
            text_a = tokenization.convert_to_unicode(line[6])
            text_b = tokenization.convert_to_unicode(line[7])
            label = tokenization.convert_to_unicode(line[1])
            examples.append(
                InputExample(
                    guid=guid, text_a=text_a, text_b=text_b, label=label))
        return examples

    def get_labels(self):
        """See base class."""
        return ["contradiction", "entailment", "neutral"]


class MnliProcessor(DataProcessor):
    """Processor for the MultiNLI data set (GLUE version)."""

    def get_train_examples(self, data_dir):
        """See base class."""
        return self._create_examples(
            self._read_tsv(os.path.join(data_dir, "train.tsv")), "train")

    def get_dev_examples(self, data_dir):
        """See base class."""
        return self._create_examples(
            self._read_tsv(os.path.join(data_dir, "dev_matched.tsv")),
            "dev_matched")

    def get_test_examples(self, data_dir):
        """See base class."""
        return self._create_examples(
            self._read_tsv(os.path.join(data_dir, "test_matched.tsv")), "test")

    def get_labels(self):
        """See base class."""
        return ["contradiction", "entailment", "neutral"]

    def _create_examples(self, lines, set_type):
        """Creates examples for the training and dev sets."""
        examples = []
        for (i, line) in enumerate(lines):
            if i == 0:
                continue
            guid = "%s-%s" % (set_type,
                              tokenization.convert_to_unicode(line[0]))
            text_a = tokenization.convert_to_unicode(line[8])
            text_b = tokenization.convert_to_unicode(line[9])
            if set_type == "test":
                label = "contradiction"
            else:
                label = tokenization.convert_to_unicode(line[-1])
            examples.append(
                InputExample(
                    guid=guid, text_a=text_a, text_b=text_b, label=label))
        return examples


class MrpcProcessor(DataProcessor):
    """Processor for the MRPC data set (GLUE version)."""

    def get_train_examples(self, data_dir):
        """See base class."""
        return self._create_examples(
            self._read_tsv(os.path.join(data_dir, "train.tsv")), "train")

    def get_dev_examples(self, data_dir):
        """See base class."""
        return self._create_examples(
            self._read_tsv(os.path.join(data_dir, "dev.tsv")), "dev")

    def get_test_examples(self, data_dir):
        """See base class."""
        return self._create_examples(
            self._read_tsv(os.path.join(data_dir, "test.tsv")), "test")

    def get_labels(self):
        """See base class."""
        return ["0", "1"]

    def _create_examples(self, lines, set_type):
        """Creates examples for the training and dev sets."""
        examples = []
        for (i, line) in enumerate(lines):
            if i == 0:
                continue
            guid = "%s-%s" % (set_type, i)
            text_a = tokenization.convert_to_unicode(line[3])
            text_b = tokenization.convert_to_unicode(line[4])
            if set_type == "test":
                label = "0"
            else:
                label = tokenization.convert_to_unicode(line[0])
            examples.append(
                InputExample(
                    guid=guid, text_a=text_a, text_b=text_b, label=label))
        return examples


class ColaProcessor(DataProcessor):
    """Processor for the CoLA data set (GLUE version)."""

    def get_train_examples(self, data_dir):
        """See base class."""
        return self._create_examples(
            self._read_tsv(os.path.join(data_dir, "train.tsv")), "train")

    def get_dev_examples(self, data_dir):
        """See base class."""
        return self._create_examples(
            self._read_tsv(os.path.join(data_dir, "dev.tsv")), "dev")

    def get_test_examples(self, data_dir):
        """See base class."""
        return self._create_examples(
            self._read_tsv(os.path.join(data_dir, "test.tsv")), "test")

    def get_labels(self):
        """See base class."""
        return ["0", "1"]

    def _create_examples(self, lines, set_type):
        """Creates examples for the training and dev sets."""
        examples = []
        for (i, line) in enumerate(lines):
            # Only the test set has a header
            if set_type == "test" and i == 0:
                continue
            guid = "%s-%s" % (set_type, i)
            if set_type == "test":
                text_a = tokenization.convert_to_unicode(line[1])
                label = "0"
            else:
                text_a = tokenization.convert_to_unicode(line[3])
                label = tokenization.convert_to_unicode(line[1])
            examples.append(
                InputExample(
                    guid=guid, text_a=text_a, text_b=None, label=label))
        return examples


def convert_single_example_to_unicode(guid, single_example):
    text_a = tokenization.convert_to_unicode(single_example[0])
    text_b = tokenization.convert_to_unicode(single_example[1])
    label = tokenization.convert_to_unicode(single_example[2])
    return InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label)


def convert_single_example(ex_index, example, label_list, max_seq_length,
                           tokenizer):
    """Converts a single `InputExample` into a single `InputFeatures`."""
    label_map = {}
    for (i, label) in enumerate(label_list):
        label_map[label] = i

    tokens_a = tokenizer.tokenize(example.text_a)
    tokens_b = None
    if example.text_b:
        tokens_b = tokenizer.tokenize(example.text_b)

    if tokens_b:
        # Modifies `tokens_a` and `tokens_b` in place so that the total
        # length is less than the specified length.
        # Account for [CLS], [SEP], [SEP] with "- 3"
        _truncate_seq_pair(tokens_a, tokens_b, max_seq_length - 3)
    else:
        # Account for [CLS] and [SEP] with "- 2"
        if len(tokens_a) > max_seq_length - 2:
            tokens_a = tokens_a[0:(max_seq_length - 2)]

    # The convention in BERT is:
    # (a) For sequence pairs:
    #  tokens:   [CLS] is this jack ##son ##ville ? [SEP] no it is not . [SEP]
    #  type_ids: 0     0  0    0    0     0       0 0     1  1  1  1   1 1
    # (b) For single sequences:
    #  tokens:   [CLS] the dog is hairy . [SEP]
    #  type_ids: 0     0   0   0  0     0 0
    #
    # Where "type_ids" are used to indicate whether this is the first
    # sequence or the second sequence. The embedding vectors for `type=0` and
    # `type=1` were learned during pre-training and are added to the wordpiece
    # embedding vector (and position vector). This is not *strictly* necessary
    # since the [SEP] token unambiguously separates the sequences, but it makes
    # it easier for the model to learn the concept of sequences.
    #
    # For classification tasks, the first vector (corresponding to [CLS]) is
    # used as as the "sentence vector". Note that this only makes sense because
    # the entire model is fine-tuned.
    tokens = []
    segment_ids = []
    tokens.append("[CLS]")
    segment_ids.append(0)
    for token in tokens_a:
        tokens.append(token)
        segment_ids.append(0)
    tokens.append("[SEP]")
    segment_ids.append(0)

    if tokens_b:
        for token in tokens_b:
            tokens.append(token)
            segment_ids.append(1)
        tokens.append("[SEP]")
        segment_ids.append(1)

    input_ids = tokenizer.convert_tokens_to_ids(tokens)

    # The mask has 1 for real tokens and 0 for padding tokens. Only real
    # tokens are attended to.
    input_mask = [1] * len(input_ids)

    label_id = label_map[example.label]

    feature = InputFeatures(
        input_ids=input_ids,
        input_mask=input_mask,
        segment_ids=segment_ids,
        label_id=label_id)
    return feature


def convert_examples_to_features(examples, label_list, max_seq_length,
                                 tokenizer):
    """Convert a set of `InputExample`s to a list of `InputFeatures`."""

    features = []
    for (ex_index, example) in enumerate(examples):
        if ex_index % 10000 == 0:
            print("Writing example %d of %d" % (ex_index, len(examples)))

        feature = convert_single_example(ex_index, example, label_list,
                                         max_seq_length, tokenizer)

        features.append(feature)
    return features


if __name__ == '__main__':
    pass