Skip to content

  • 体验新版
    • 正在加载...
  • 登录
  • PaddlePaddle
  • DeepSpeech
  • Issue
  • #470

D
DeepSpeech
  • 项目概览

PaddlePaddle / DeepSpeech
大约 2 年 前同步成功

通知 210
Star 8425
Fork 1598
  • 代码
    • 文件
    • 提交
    • 分支
    • Tags
    • 贡献者
    • 分支图
    • Diff
  • Issue 245
    • 列表
    • 看板
    • 标记
    • 里程碑
  • 合并请求 3
  • Wiki 0
    • Wiki
  • 分析
    • 仓库
    • DevOps
  • 项目成员
  • Pages
D
DeepSpeech
  • 项目概览
    • 项目概览
    • 详情
    • 发布
  • 仓库
    • 仓库
    • 文件
    • 提交
    • 分支
    • 标签
    • 贡献者
    • 分支图
    • 比较
  • Issue 245
    • Issue 245
    • 列表
    • 看板
    • 标记
    • 里程碑
  • 合并请求 3
    • 合并请求 3
  • Pages
  • 分析
    • 分析
    • 仓库分析
    • DevOps
  • Wiki 0
    • Wiki
  • 成员
    • 成员
  • 收起侧边栏
  • 动态
  • 分支图
  • 创建新Issue
  • 提交
  • Issue看板
已关闭
开放中
Opened 7月 02, 2020 by saxon_zh@saxon_zhGuest

Unable to train DeepSpeech from scratch on Indian Hinglish(Mixed Hindi_English) 8khz audio data.

Created by: alamnasim

Hi,

I want to train Hinglish(Mixed Hindi_English) 8khz conversation audio data from scratch. I am getting ValueError: Input signal length=0 is too small to resample from 8000->16000.

Training Command

CUDA_VISIBLE_DEVICES=0,1 python train.py

Trainig Log: ----------- Configuration Arguments ----------- batch_size: 256 dev_manifest: data/audio_data/manifest.dev-clean init_from_pretrained_model: None is_local: True learning_rate: 0.0005 max_duration: 27.0 mean_std_path: data/audio_data/mean_std.npz min_duration: 0.0 num_conv_layers: 2 num_epoch: 200 num_iter_print: 100 num_rnn_layers: 3 num_samples: 489948 output_model_dir: checkpoint_dir rnn_layer_size: 2048 save_epoch: 10 share_rnn_weights: False shuffle_method: batch_shuffle_clipped specgram_type: mfcc test_off: False train_manifest: data/audio_data/manifest.train-clean use_gpu: True use_gru: True use_sortagrad: True vocab_path: data/audio_data/eng_vocab.txt

W0702 16:43:10.574574 7779 device_context.cc:252] Please NOTE: device: 0, CUDA Capability: 75, Driver API Version: 10.2, Runtime API Version: 10.0 W0702 16:43:10.577214 7779 device_context.cc:260] device: 0, cuDNN Version: 7.6. W0702 16:43:14.229719 7779 fuse_all_reduce_op_pass.cc:74] Find all_reduce operators: 38. To make the speed faster, some all_reduce ops are fused during training, after fusion, the number of all_reduce ops is 38. /home/ubuntu/tmp/deepspeech2-venv/local/lib/python2.7/site-packages/resampy/core.py:90: FutureWarning: Conversion of the second argument of issubdtype from float to np.floating is deprecated. In future, it will be treated as np.float64 == np.dtype(float).type. if not np.issubdtype(x.dtype, np.float): 2020-07-02 16:43:19,910-WARNING: Your reader has raised an exception! Exception in thread Thread-1: Traceback (most recent call last): File "/usr/lib/python2.7/threading.py", line 801, in __bootstrap_inner self.run() File "/usr/lib/python2.7/threading.py", line 754, in run self.__target(*self.__args, **self.__kwargs) File "/home/ubuntu/tmp/deepspeech2-venv/local/lib/python2.7/site-packages/paddle/fluid/reader.py", line 1157, in thread_main six.reraise(*sys.exc_info()) File "/home/ubuntu/tmp/deepspeech2-venv/local/lib/python2.7/site-packages/paddle/fluid/reader.py", line 1137, in thread_main for tensors in self._tensor_reader(): File "/home/ubuntu/drive_a/Paddlepaddle_DeepSpeech/DeepSpeech/data_utils/data.py", line 200, in batch_reader for instance in instance_reader(): File "/home/ubuntu/drive_a/Paddlepaddle_DeepSpeech/DeepSpeech/data_utils/data.py", line 279, in reader instance["text"]), File "/home/ubuntu/drive_a/Paddlepaddle_DeepSpeech/DeepSpeech/data_utils/data.py", line 121, in process_utterance speech_segment, self._keep_transcription_text) File "/home/ubuntu/drive_a/Paddlepaddle_DeepSpeech/DeepSpeech/data_utils/featurizer/speech_featurizer.py", line 76, in featurize audio_feature = self._audio_featurizer.featurize(speech_segment) File "/home/ubuntu/drive_a/Paddlepaddle_DeepSpeech/DeepSpeech/data_utils/featurizer/audio_featurizer.py", line 80, in featurize audio_segment.resample(self._target_sample_rate) File "/home/ubuntu/drive_a/Paddlepaddle_DeepSpeech/DeepSpeech/data_utils/audio.py", line 400, in resample self.samples, self.sample_rate, target_sample_rate, filter=filter) File "/home/ubuntu/tmp/deepspeech2-venv/local/lib/python2.7/site-packages/resampy/core.py", line 102, in resample 'resample from {}->{}'.format(x.shape[axis], sr_orig, sr_new)) ValueError: Input signal length=0 is too small to resample from 8000->16000

/home/ubuntu/tmp/deepspeech2-venv/local/lib/python2.7/site-packages/paddle/fluid/executor.py:1070: UserWarning: "The following exception is not an EOF exception.") Traceback (most recent call last): File "train.py", line 144, in main() File "train.py", line 140, in main train() File "train.py", line 135, in train test_off=args.test_off) File "/home/ubuntu/drive_a/Paddlepaddle_DeepSpeech/DeepSpeech/model_utils/model.py", line 336, in train return_numpy=False) File "/home/ubuntu/tmp/deepspeech2-venv/local/lib/python2.7/site-packages/paddle/fluid/executor.py", line 1071, in run six.reraise(*sys.exc_info()) File "/home/ubuntu/tmp/deepspeech2-venv/local/lib/python2.7/site-packages/paddle/fluid/executor.py", line 1066, in run return_merged=return_merged) File "/home/ubuntu/tmp/deepspeech2-venv/local/lib/python2.7/site-packages/paddle/fluid/executor.py", line 1167, in _run_impl return_merged=return_merged) File "/home/ubuntu/tmp/deepspeech2-venv/local/lib/python2.7/site-packages/paddle/fluid/executor.py", line 879, in _run_parallel tensors = exe.run(fetch_var_names, return_merged)._move_to_list() paddle.fluid.core_avx.EnforceNotMet:


C++ Call Stacks (More useful to developers):

0 std::string paddle::platform::GetTraceBackString<std::string const&>(std::string const&, char const*, int) 1 paddle::platform::EnforceNotMet::EnforceNotMet(std::string const&, char const*, int) 2 paddle::operators::reader::BlockingQueue<std::vector<paddle::framework::LoDTensor, std::allocatorpaddle::framework::LoDTensor > >::Receive(std::vector<paddle::framework::LoDTensor, std::allocatorpaddle::framework::LoDTensor >) 3 paddle::operators::reader::PyReader::ReadNext(std::vector<paddle::framework::LoDTensor, std::allocatorpaddle::framework::LoDTensor >) 4 std::_Function_handler<std::unique_ptr<std::__future_base::_Result_base, std::__future_base::_Result_base::_Deleter> (), std::__future_base::_Task_setter<std::unique_ptr<std::__future_base::_Result, std::__future_base::_Result_base::_Deleter>, unsigned long> >::_M_invoke(std::_Any_data const&) 5 std::__future_base::_State_base::_M_do_set(std::function<std::unique_ptr<std::__future_base::_Result_base, std::__future_base::_Result_base::_Deleter> ()>&, bool&) 6 ThreadPool::ThreadPool(unsigned long)::{lambda()#1 (closed)}::operator()() const


Python Call Stacks (More useful to users):

File "/home/ubuntu/tmp/deepspeech2-venv/local/lib/python2.7/site-packages/paddle/fluid/framework.py", line 2610, in append_op attrs=kwargs.get("attrs", None)) File "/home/ubuntu/tmp/deepspeech2-venv/local/lib/python2.7/site-packages/paddle/fluid/reader.py", line 1079, in _init_non_iterable attrs={'drop_last': self._drop_last}) File "/home/ubuntu/tmp/deepspeech2-venv/local/lib/python2.7/site-packages/paddle/fluid/reader.py", line 977, in init self._init_non_iterable() File "/home/ubuntu/tmp/deepspeech2-venv/local/lib/python2.7/site-packages/paddle/fluid/reader.py", line 608, in from_generator iterable, return_list, drop_last) File "/home/ubuntu/drive_a/Paddlepaddle_DeepSpeech/DeepSpeech/model_utils/model.py", line 112, in create_network use_double_buffer=True) File "/home/ubuntu/drive_a/Paddlepaddle_DeepSpeech/DeepSpeech/model_utils/model.py", line 281, in train train_reader, log_probs, ctc_loss = self.create_network() File "train.py", line 135, in train test_off=args.test_off) File "train.py", line 140, in main train() File "train.py", line 144, in main()


Error Message Summary:

Error: Blocking queue is killed because the data reader raises an exception [Hint: Expected killed_ != true, but received killed_:1 == true:1.] at (/paddle/paddle/fluid/operators/reader/blocking_queue.h:141) [operator < read > error]

Anyone can help me to resolve this issue. Can I run 8khz audio on training from scratch? I am able to infer an audio(8k sample_rate) using baidu_en8k model.

Thanks Nasim

指派人
分配到
无
里程碑
无
分配里程碑
工时统计
无
截止日期
无
标识: paddlepaddle/DeepSpeech#470
渝ICP备2023009037号

京公网安备11010502055752号

网络110报警服务 Powered by GitLab CE v13.7
开源知识
Git 入门 Pro Git 电子书 在线学 Git
Markdown 基础入门 IT 技术知识开源图谱
帮助
使用手册 反馈建议 博客
《GitCode 隐私声明》 《GitCode 服务条款》 关于GitCode
Powered by GitLab CE v13.7