Skip to content

  • 体验新版
    • 正在加载...
  • 登录
  • PaddlePaddle
  • DeepSpeech
  • Issue
  • #251

D
DeepSpeech
  • 项目概览

PaddlePaddle / DeepSpeech
大约 2 年 前同步成功

通知 210
Star 8425
Fork 1598
  • 代码
    • 文件
    • 提交
    • 分支
    • Tags
    • 贡献者
    • 分支图
    • Diff
  • Issue 245
    • 列表
    • 看板
    • 标记
    • 里程碑
  • 合并请求 3
  • Wiki 0
    • Wiki
  • 分析
    • 仓库
    • DevOps
  • 项目成员
  • Pages
D
DeepSpeech
  • 项目概览
    • 项目概览
    • 详情
    • 发布
  • 仓库
    • 仓库
    • 文件
    • 提交
    • 分支
    • 标签
    • 贡献者
    • 分支图
    • 比较
  • Issue 245
    • Issue 245
    • 列表
    • 看板
    • 标记
    • 里程碑
  • 合并请求 3
    • 合并请求 3
  • Pages
  • 分析
    • 分析
    • 仓库分析
    • DevOps
  • Wiki 0
    • Wiki
  • 成员
    • 成员
  • 收起侧边栏
  • 动态
  • 分支图
  • 创建新Issue
  • 提交
  • Issue看板
已关闭
开放中
Opened 6月 10, 2018 by saxon_zh@saxon_zhGuest

use Paddlepaddle to train deepspeech show: Cannot allocate memory

Created by: songxia928

============================================================

*** Print content:

============================================================ ................................................................................................... Pass: 25, Batch: 3100, TrainCost: 2.208693 ............................... ------- Time: 7017 sec, Pass: 25, ValidationCost: 52.2345577601 ................................................................................................... Pass: 26, Batch: 100, TrainCost: 1.603295 ................................................................................................... Pass: 26, Batch: 200, TrainCost: 1.676432 ................................................................................................... Pass: 26, Batch: 300, TrainCost: 1.612143 ................................................................................................... Pass: 26, Batch: 400, TrainCost: 1.353869 ................................................................................................... Pass: 26, Batch: 500, TrainCost: 1.482893 ................................................................................................... Pass: 26, Batch: 600, TrainCost: 1.687072 ................................................................................................... Pass: 26, Batch: 700, TrainCost: 1.966297 ................................................................................................... Pass: 26, Batch: 800, TrainCost: 1.420656 ................................................................................................... Pass: 26, Batch: 900, TrainCost: 1.590458 ................................................................................................... Pass: 26, Batch: 1000, TrainCost: 2.041432 ................................................................................................... Pass: 26, Batch: 1100, TrainCost: 1.333077 ................................................................................................... Pass: 26, Batch: 1200, TrainCost: 1.839570 ................................................................................................... Pass: 26, Batch: 1300, TrainCost: 1.614656 ................................................................................................... Pass: 26, Batch: 1400, TrainCost: 1.606205 ................................................................................................... Pass: 26, Batch: 1500, TrainCost: 2.410910 ................................................................................................... Pass: 26, Batch: 1600, TrainCost: 1.942313 ................................................................................................... Pass: 26, Batch: 1700, TrainCost: 2.099164 ................................................................................................... Pass: 26, Batch: 1800, TrainCost: 1.974127 ................................................................................................... Pass: 26, Batch: 1900, TrainCost: 2.180515 ................................................................................................... Pass: 26, Batch: 2000, TrainCost: 2.120815 ................................................................................................... Pass: 26, Batch: 2100, TrainCost: 2.503351 ................................................................................................... Pass: 26, Batch: 2200, TrainCost: 2.302993 ................................................................................................... Pass: 26, Batch: 2300, TrainCost: 2.194658 ................................................................................................... Pass: 26, Batch: 2400, TrainCost: 2.364214 ................................................................................................... Pass: 26, Batch: 2500, TrainCost: 2.714264 ................................................................................................... Pass: 26, Batch: 2600, TrainCost: 2.205300 ................................................................................................... Pass: 26, Batch: 2700, TrainCost: 2.671229 ................................................................................................... Pass: 26, Batch: 2800, TrainCost: 2.073756 ................................................................................................... Pass: 26, Batch: 2900, TrainCost: 2.087103 ................................................................................................... Pass: 26, Batch: 3000, TrainCost: 2.158531 ................................................................................................... Pass: 26, Batch: 3100, TrainCost: 2.519216 ................................ ------- Time: 6982 sec, Pass: 26, ValidationCost: 53.4873382121 Traceback (most recent call last): File "train.py", line 129, in main() File "train.py", line 125, in main train() File "train.py", line 116, in train test_off=args.test_off) File "/data1/chensong/code/20180523_deepspeech/DeepSpeech/model_utils/model.py", line 155, in train feeding=adapted_feeding_dict) File "/usr/local/lib/python2.7/dist-packages/paddle/v2/trainer.py", line 162, in train for batch_id, data_batch in enumerate(reader()): File "/data1/chensong/code/20180523_deepspeech/DeepSpeech/model_utils/model.py", line 391, in adapted_reader for instance in data(): File "/data1/chensong/code/20180523_deepspeech/DeepSpeech/data_utils/data.py", line 199, in batch_reader for instance in instance_reader(): File "/data1/chensong/code/20180523_deepspeech/DeepSpeech/data_utils/utility.py", line 198, in xreader w.start() File "/usr/lib/python2.7/multiprocessing/process.py", line 130, in start self._popen = Popen(self) File "/usr/lib/python2.7/multiprocessing/forking.py", line 121, in init self.pid = os.fork() OSError: [Errno 12] Cannot allocate memory

============================================================

*** my machine state:

============================================================

root@2f9aebc64ff:/data1/code/20180523_deepspeech/DeepSpeech# nvidia-smi Sun Jun 10 15:10:15 2018
+-----------------------------------------------------------------------------+ | NVIDIA-SMI 375.26 Driver Version: 375.26 | |-------------------------------+----------------------+----------------------+ | GPU Name Persistence-M| Bus-Id Disp.A | Volatile Uncorr. ECC | | Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util Compute M. | |===============================+======================+======================| | 0 Tesla K80 Off | 0000:05:00.0 Off | 0 | | N/A 23C P8 27W / 149W | 0MiB / 11439MiB | 0% Default | +-------------------------------+----------------------+----------------------+ | 1 Tesla K80 Off | 0000:06:00.0 Off | 0 | | N/A 25C P8 27W / 149W | 0MiB / 11439MiB | 0% Default | +-------------------------------+----------------------+----------------------+ | 2 Tesla K80 Off | 0000:09:00.0 Off | 0 | | N/A 26C P8 27W / 149W | 0MiB / 11439MiB | 0% Default | +-------------------------------+----------------------+----------------------+ | 3 Tesla K80 Off | 0000:0A:00.0 Off | 0 | | N/A 27C P8 30W / 149W | 0MiB / 11439MiB | 0% Default | +-------------------------------+----------------------+----------------------+ | 4 Tesla K80 Off | 0000:84:00.0 Off | 0 | | N/A 32C P0 54W / 149W | 6569MiB / 11439MiB | 0% Default | +-------------------------------+----------------------+----------------------+ | 5 Tesla K80 Off | 0000:85:00.0 Off | 0 | | N/A 37C P0 70W / 149W | 6351MiB / 11439MiB | 0% Default | +-------------------------------+----------------------+----------------------+ | 6 Tesla K80 Off | 0000:88:00.0 Off | 0 | | N/A 33C P0 55W / 149W | 6830MiB / 11439MiB | 0% Default | +-------------------------------+----------------------+----------------------+ | 7 Tesla K80 Off | 0000:89:00.0 Off | 0 | | N/A 37C P0 69W / 149W | 6542MiB / 11439MiB | 0% Default | +-------------------------------+----------------------+----------------------+

+-----------------------------------------------------------------------------+ | Processes: GPU Memory | | GPU PID Type Process name Usage | |=============================================================================| +-----------------------------------------------------------------------------+ root@2f9aebc64ff:/data1/code/20180523_deepspeech/DeepSpeech# free -w total used free shared buffers cache available Mem: 264057556 241080888 3589964 14154876 2435984 16950720 6184440 Swap: 16777212 16452236 324976

============================================================

*** the training parameters I set:

============================================================ CUDA_VISIBLE_DEVICES=4,5,6,7
python -u train.py
--batch_size=32
--trainer_count=4
--num_passes=50
--num_proc_data=16
--num_conv_layers=2
--num_rnn_layers=3
--rnn_layer_size=1024
--num_iter_print=100
--learning_rate=5e-4
--max_duration=20.0
--min_duration=1.0
--test_off=False
--use_sortagrad=True
--use_gru=True
--use_gpu=True
--is_local=True
--share_rnn_weights=False
--train_manifest='data_mangguo_2/aishell/manifest.train'
--dev_manifest='data_mangguo_2/aishell/manifest.dev'
--mean_std_path='data_mangguo_2/aishell/mean_std.npz'
--vocab_path='data_mangguo_2/aishell/vocab.txt'
--output_model_dir='./checkpoints/mangguo_2'
--augment_conf_path='conf/augmentation.config'
--specgram_type='linear'
--shuffle_method='batch_shuffle_clipped'

Hi, I used PaddlePaddle to train a Chinese model based on Deepspeech. I can finish training a model with the data of aishell . when I add more audio data to train , it will show this wrong. From the machine state , I guess the CPU' memory is not enough. But I don't know how to solve it . Anyone could tell me , thanks ! (我用PaddlePaddle训练一个基于Deepspeech的汉语模型。我能使用aishell的数据完成一轮训练,但是当语言数据增加时就会出现内存无法分配的错误提示,请问,有谁能知道怎么解决吗?)

指派人
分配到
无
里程碑
无
分配里程碑
工时统计
无
截止日期
无
标识: paddlepaddle/DeepSpeech#251
渝ICP备2023009037号

京公网安备11010502055752号

网络110报警服务 Powered by GitLab CE v13.7
开源知识
Git 入门 Pro Git 电子书 在线学 Git
Markdown 基础入门 IT 技术知识开源图谱
帮助
使用手册 反馈建议 博客
《GitCode 隐私声明》 《GitCode 服务条款》 关于GitCode
Powered by GitLab CE v13.7