Skip to content

  • 体验新版
    • 正在加载...
  • 登录
  • PaddlePaddle
  • DeepSpeech
  • Issue
  • #109

D
DeepSpeech
  • 项目概览

PaddlePaddle / DeepSpeech
大约 2 年 前同步成功

通知 210
Star 8425
Fork 1598
  • 代码
    • 文件
    • 提交
    • 分支
    • Tags
    • 贡献者
    • 分支图
    • Diff
  • Issue 245
    • 列表
    • 看板
    • 标记
    • 里程碑
  • 合并请求 3
  • Wiki 0
    • Wiki
  • 分析
    • 仓库
    • DevOps
  • 项目成员
  • Pages
D
DeepSpeech
  • 项目概览
    • 项目概览
    • 详情
    • 发布
  • 仓库
    • 仓库
    • 文件
    • 提交
    • 分支
    • 标签
    • 贡献者
    • 分支图
    • 比较
  • Issue 245
    • Issue 245
    • 列表
    • 看板
    • 标记
    • 里程碑
  • 合并请求 3
    • 合并请求 3
  • Pages
  • 分析
    • 分析
    • 仓库分析
    • DevOps
  • Wiki 0
    • Wiki
  • 成员
    • 成员
  • 收起侧边栏
  • 动态
  • 分支图
  • 创建新Issue
  • 提交
  • Issue看板
已关闭
开放中
Opened 1月 05, 2018 by saxon_zh@saxon_zhGuest

Error related to GPU when running example script for librispeech

Created by: misbullah

Hi, I got the following error when running the librispeech examples.

I use cuDNN v5.5

CUDA_VISIBLE_DEVICES=0,1,2,3

(paddle-env) alim@ctc3:~/paddle-deepspeech/examples/librispeech$ sh run_train.sh ----------- Configuration Arguments ----------- augment_conf_path: conf/augmentation.config batch_size: 16 dev_manifest: data/librispeech/manifest.dev-clean init_model_path: None is_local: 1 learning_rate: 0.0005 max_duration: 27.0 mean_std_path: data/librispeech/mean_std.npz min_duration: 0.0 num_conv_layers: 2 num_iter_print: 100 num_passes: 50 num_proc_data: 16 num_rnn_layers: 3 output_model_dir: ./checkpoints/libri rnn_layer_size: 512 share_rnn_weights: 1 shuffle_method: batch_shuffle_clipped specgram_type: linear test_off: 0 train_manifest: data/librispeech/manifest.train trainer_count: 30 use_gpu: 1 use_gru: 0 use_sortagrad: 1 vocab_path: data/librispeech/vocab.txt

I0105 17:36:05.526255 27647 Util.cpp:166] commandline: --use_gpu=1 --rnn_use_batch=True --log_clipping=True --trainer_count=30 [INFO 2018-01-05 17:36:10,822 layers.py:2689] output for conv_0: c = 32, h = 81, w = 54, size = 139968 [INFO 2018-01-05 17:36:10,824 layers.py:3251] output for batch_norm_0: c = 32, h = 81, w = 54, size = 139968 [INFO 2018-01-05 17:36:10,825 layers.py:7409] output for scale_sub_region_0: c = 32, h = 81, w = 54, size = 139968 [INFO 2018-01-05 17:36:10,826 layers.py:2689] output for conv_1: c = 32, h = 41, w = 54, size = 70848 [INFO 2018-01-05 17:36:10,827 layers.py:3251] output for batch_norm_1: c = 32, h = 41, w = 54, size = 70848 [INFO 2018-01-05 17:36:10,828 layers.py:7409] output for scale_sub_region_1: c = 32, h = 41, w = 54, size = 70848 F0105 17:36:10.859037 27647 hl_gpu_matrix_kernel.cuh:181] Check failed: cudaSuccess == err (0 vs. 8) [hl_gpu_apply_unary_op failed] CUDA error: invalid device function

* Check failure stack trace: *

@ 0x7fb7341cabcd google::LogMessage::Fail() @ 0x7fb7341ce67c google::LogMessage::SendToLog() @ 0x7fb7341ca6f3 google::LogMessage::Flush() @ 0x7fb7341cfb8e google::LogMessageFatal::~LogMessageFatal() @ 0x7fb73403f3eb hl_gpu_apply_unary_op<>() @ 0x7fb73403f75d paddle::BaseMatrixT<>::applyUnary<>() @ 0x7fb73403f9a3 paddle::BaseMatrixT<>::zero() @ 0x7fb733fde375 paddle::GpuMatrix::zeroMem() @ 0x7fb733ec8e72 paddle::BatchNormBaseLayer::init() @ 0x7fb733e820c1 paddle::CudnnBatchNormLayer::init() @ 0x7fb733ed3d7f paddle::NeuralNetwork::init() @ 0x7fb733ef9506 paddle::MultiGradientMachine::MultiGradientMachine() @ 0x7fb733efdd7f paddle::GradientMachine::create() @ 0x7fb7341a7495 GradientMachine::createFromPaddleModelPtr() @ 0x7fb7341a767f GradientMachine::createByConfigProtoStr() @ 0x7fb733d84717 _wrap_GradientMachine_createByConfigProtoStr @ 0x52714b PyEval_EvalFrameEx @ 0x555551 PyEval_EvalCodeEx @ 0x525560 PyEval_EvalFrameEx @ 0x555551 PyEval_EvalCodeEx @ 0x524338 PyEval_EvalFrameEx @ 0x568b3a (unknown) @ 0x4c2604 (unknown) @ 0x4d1c5c (unknown) @ 0x55f6db (unknown) @ 0x5244dd PyEval_EvalFrameEx @ 0x555551 PyEval_EvalCodeEx @ 0x524338 PyEval_EvalFrameEx @ 0x555551 PyEval_EvalCodeEx @ 0x525560 PyEval_EvalFrameEx @ 0x555551 PyEval_EvalCodeEx @ 0x525560 PyEval_EvalFrameEx @ 0x555551 PyEval_EvalCodeEx @ 0x525560 PyEval_EvalFrameEx run_train.sh: line 33: 27647 Aborted (core dumped) CUDA_VISIBLE_DEVICES=0,1,2,3 python -u train.py --batch_size=16 --trainer_count=30 --num_passes=50 --num_proc_data=16 --num_conv_layers=2 --num_rnn_layers=3 --rnn_layer_size=512 --num_iter_print=100 --learning_rate=5e-4 --max_duration=27.0 --min_duration=0.0 --test_off=False --use_sortagrad=True --use_gru=False --use_gpu=True --is_local=True --share_rnn_weights=True --train_manifest='data/librispeech/manifest.train' --dev_manifest='data/librispeech/manifest.dev-clean' --mean_std_path='data/librispeech/mean_std.npz' --vocab_path='data/librispeech/vocab.txt' --output_model_dir='./checkpoints/libri' --augment_conf_path='conf/augmentation.config' --specgram_type='linear' --shuffle_method='batch_shuffle_clipped' Failed in training

(paddle-env) alim@ctc3:~/paddle-deepspeech/examples/librispeech$ nvcc --version nvcc: NVIDIA (R) Cuda compiler driver Copyright (c) 2005-2016 NVIDIA Corporation Built on Sun_Sep__4_22:14:01_CDT_2016 Cuda compilation tools, release 8.0, V8.0.44

(paddle-env) alim@ctc3:~/paddle-deepspeech/examples/librispeech$ nvidia-smi Fri Jan 5 17:38:35 2018
+-----------------------------------------------------------------------------+ | NVIDIA-SMI 384.90 Driver Version: 384.90 | |-------------------------------+----------------------+----------------------+ | GPU Name Persistence-M| Bus-Id Disp.A | Volatile Uncorr. ECC | | Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util Compute M. | |===============================+======================+======================| | 0 GeForce GTX 1080 Off | 00000000:02:00.0 Off | N/A | | 24% 45C P2 44W / 180W | 1117MiB / 8114MiB | 0% Default | +-------------------------------+----------------------+----------------------+ | 1 GeForce GTX 1080 Off | 00000000:03:00.0 Off | N/A | | 24% 36C P8 8W / 180W | 10MiB / 8114MiB | 0% Default | +-------------------------------+----------------------+----------------------+ | 2 GeForce GTX 1080 Off | 00000000:81:00.0 Off | N/A | | 24% 36C P8 7W / 180W | 10MiB / 8114MiB | 0% Default | +-------------------------------+----------------------+----------------------+ | 3 GeForce GTX 1080 Off | 00000000:82:00.0 Off | N/A | | 24% 45C P2 134W / 180W | 2438MiB / 8114MiB | 0% Default | +-------------------------------+----------------------+----------------------+

+-----------------------------------------------------------------------------+ | Processes: GPU Memory | | GPU PID Type Process name Usage | |=============================================================================| | 0 27612 C nnet3-chain-train 1107MiB | | 3 27473 C nnet3-chain-train 1159MiB | | 3 27479 C nnet3-chain-train 1269MiB | +-----------------------------------------------------------------------------+

Any suggestion?

Thanks, Alim

指派人
分配到
无
里程碑
无
分配里程碑
工时统计
无
截止日期
无
标识: paddlepaddle/DeepSpeech#109
渝ICP备2023009037号

京公网安备11010502055752号

网络110报警服务 Powered by GitLab CE v13.7
开源知识
Git 入门 Pro Git 电子书 在线学 Git
Markdown 基础入门 IT 技术知识开源图谱
帮助
使用手册 反馈建议 博客
《GitCode 隐私声明》 《GitCode 服务条款》 关于GitCode
Powered by GitLab CE v13.7