未验证 提交 fe8a14dd 编写于 作者: H Hui Zhang 提交者: GitHub

Merge pull request #1740 from zh794390558/fix

[speechx] fix nnet input and output name
......@@ -12,6 +12,8 @@ exclude =
.git,
# python cache
__pycache__,
# third party
utils/compute-wer.py,
third_party/,
# Provide a comma-separate list of glob patterns to include for checks.
filename =
......
......@@ -40,6 +40,7 @@ from paddlespeech.s2t.utils.utility import UpdateConfig
__all__ = ['ASRExecutor']
@cli_register(
name='paddlespeech.asr', description='Speech to text infer command.')
class ASRExecutor(BaseExecutor):
......@@ -148,7 +149,7 @@ class ASRExecutor(BaseExecutor):
os.path.dirname(os.path.abspath(self.cfg_path)))
logger.info(self.cfg_path)
logger.info(self.ckpt_path)
#Init body.
self.config = CfgNode(new_allowed=True)
self.config.merge_from_file(self.cfg_path)
......@@ -278,7 +279,8 @@ class ASRExecutor(BaseExecutor):
self._outputs["result"] = result_transcripts[0]
elif "conformer" in model_type or "transformer" in model_type:
logger.info(f"we will use the transformer like model : {model_type}")
logger.info(
f"we will use the transformer like model : {model_type}")
try:
result_transcripts = self.model.decode(
audio,
......
......@@ -279,7 +279,7 @@ class U2BaseModel(ASRInterface, nn.Layer):
# TODO(Hui Zhang): if end_flag.sum() == running_size:
if end_flag.cast(paddle.int64).sum() == running_size:
break
# 2.1 Forward decoder step
hyps_mask = subsequent_mask(i).unsqueeze(0).repeat(
running_size, 1, 1).to(device) # (B*N, i, i)
......
......@@ -180,7 +180,7 @@ class CTCDecoder(CTCDecoderBase):
# init once
if self._ext_scorer is not None:
return
if language_model_path != '':
logger.info("begin to initialize the external scorer "
"for decoding")
......
......@@ -47,4 +47,4 @@ paddlespeech_server start --config_file conf/ws_conformer_application.yaml
```
paddlespeech_client asr_online --server_ip 127.0.0.1 --port 8090 --input input_16k.wav
```
\ No newline at end of file
```
......@@ -48,4 +48,4 @@ paddlespeech_server start --config_file conf/ws_conformer_application.yaml
```
paddlespeech_client asr_online --server_ip 127.0.0.1 --port 8090 --input zh.wav
```
\ No newline at end of file
```
......@@ -12,7 +12,9 @@
# See the License for the specific language governing permissions and
# limitations under the License.
from collections import defaultdict
import paddle
from paddlespeech.cli.log import logger
from paddlespeech.s2t.utils.utility import log_add
......
......@@ -52,7 +52,7 @@ def evaluate(args):
# acoustic model
am_name = args.am[:args.am.rindex('_')]
am_dataset = args.am[args.am.rindex('_') + 1:]
am_inference = get_am_inference(
am=args.am,
am_config=am_config,
......
......@@ -20,11 +20,11 @@ A few sklearn functions are modified in this script as per requirement.
import argparse
import copy
import warnings
from distutils.util import strtobool
import numpy as np
import scipy
import sklearn
from distutils.util import strtobool
from scipy import linalg
from scipy import sparse
from scipy.sparse.csgraph import connected_components
......
......@@ -34,10 +34,12 @@ DEFINE_int32(receptive_field_length,
DEFINE_int32(downsampling_rate,
4,
"two CNN(kernel=5) module downsampling rate.");
DEFINE_string(
model_input_names,
"audio_chunk,audio_chunk_lens,chunk_state_h_box,chunk_state_c_box",
"model input names");
DEFINE_string(model_output_names,
"save_infer_model/scale_0.tmp_1,save_infer_model/"
"scale_1.tmp_1,save_infer_model/scale_2.tmp_1,save_infer_model/"
"scale_3.tmp_1",
"softmax_0.tmp_0,tmp_5,concat_0.tmp_0,concat_1.tmp_0",
"model output names");
DEFINE_string(model_cache_names, "5-1-1024,5-1-1024", "model cache names");
......@@ -76,6 +78,7 @@ int main(int argc, char* argv[]) {
model_opts.model_path = model_path;
model_opts.params_path = model_params;
model_opts.cache_shape = FLAGS_model_cache_names;
model_opts.input_names = FLAGS_model_input_names;
model_opts.output_names = FLAGS_model_output_names;
std::shared_ptr<ppspeech::PaddleNnet> nnet(
new ppspeech::PaddleNnet(model_opts));
......
......@@ -48,7 +48,6 @@ if [ ! -f $lm ]; then
popd
fi
feat_wspecifier=$exp_dir/feats.ark
cmvn=$exp_dir/cmvn.ark
......@@ -57,7 +56,7 @@ export GLOG_logtostderr=1
# dump json cmvn to kaldi
cmvn-json2kaldi \
--json_file $ckpt_dir/data/mean_std.json \
--cmvn_write_path $exp_dir/cmvn.ark \
--cmvn_write_path $cmvn \
--binary=false
echo "convert json cmvn to kaldi ark."
......@@ -66,7 +65,7 @@ echo "convert json cmvn to kaldi ark."
linear-spectrogram-wo-db-norm-ol \
--wav_rspecifier=scp:$data/wav.scp \
--feature_wspecifier=ark,t:$feat_wspecifier \
--cmvn_file=$exp_dir/cmvn.ark
--cmvn_file=$cmvn
echo "compute linear spectrogram feature."
# run ctc beam search decoder as streaming
......
......@@ -37,10 +37,12 @@ DEFINE_int32(receptive_field_length,
DEFINE_int32(downsampling_rate,
4,
"two CNN(kernel=5) module downsampling rate.");
DEFINE_string(
model_input_names,
"audio_chunk,audio_chunk_lens,chunk_state_h_box,chunk_state_c_box",
"model input names");
DEFINE_string(model_output_names,
"save_infer_model/scale_0.tmp_1,save_infer_model/"
"scale_1.tmp_1,save_infer_model/scale_2.tmp_1,save_infer_model/"
"scale_3.tmp_1",
"softmax_0.tmp_0,tmp_5,concat_0.tmp_0,concat_1.tmp_0",
"model output names");
DEFINE_string(model_cache_names, "5-1-1024,5-1-1024", "model cache names");
......@@ -79,6 +81,7 @@ int main(int argc, char* argv[]) {
model_opts.model_path = model_graph;
model_opts.params_path = model_params;
model_opts.cache_shape = FLAGS_model_cache_names;
model_opts.input_names = FLAGS_model_input_names;
model_opts.output_names = FLAGS_model_output_names;
std::shared_ptr<ppspeech::PaddleNnet> nnet(
new ppspeech::PaddleNnet(model_opts));
......
......@@ -9,4 +9,4 @@ target_link_libraries(${bin_name} frontend kaldi-util kaldi-feat-common gflags g
set(bin_name cmvn-json2kaldi)
add_executable(${bin_name} ${CMAKE_CURRENT_SOURCE_DIR}/${bin_name}.cc)
target_include_directories(${bin_name} PRIVATE ${SPEECHX_ROOT} ${SPEECHX_ROOT}/kaldi)
target_link_libraries(${bin_name} utils kaldi-util kaldi-matrix gflags glog)
target_link_libraries(${bin_name} utils kaldi-util kaldi-matrix gflags glog ${DEPS})
\ No newline at end of file
......@@ -14,18 +14,20 @@
// Note: Do not print/log ondemand object.
#include "base/common.h"
#include "base/flags.h"
#include "base/log.h"
#include "kaldi/matrix/kaldi-matrix.h"
#include "kaldi/util/kaldi-io.h"
#include "utils/file_utils.h"
#include "utils/simdjson.h"
// #include "boost/json.hpp"
#include <boost/json/src.hpp>
DEFINE_string(json_file, "", "cmvn json file");
DEFINE_string(cmvn_write_path, "./cmvn.ark", "write cmvn");
DEFINE_bool(binary, true, "write cmvn in binary (true) or text(false)");
using namespace simdjson;
using namespace boost::json; // from <boost/json.hpp>
int main(int argc, char* argv[]) {
gflags::ParseCommandLineFlags(&argc, &argv, false);
......@@ -33,49 +35,51 @@ int main(int argc, char* argv[]) {
LOG(INFO) << "cmvn josn path: " << FLAGS_json_file;
try {
padded_string json = padded_string::load(FLAGS_json_file);
ondemand::parser parser;
ondemand::document doc = parser.iterate(json);
ondemand::value val = doc;
auto ifs = std::ifstream(FLAGS_json_file);
std::string json_str = ppspeech::ReadFile2String(FLAGS_json_file);
auto value = boost::json::parse(json_str);
if (!value.is_object()) {
LOG(ERROR) << "Input json file format error.";
}
ondemand::array mean_stat = val["mean_stat"];
std::vector<kaldi::BaseFloat> mean_stat_vec;
for (double x : mean_stat) {
mean_stat_vec.push_back(x);
for (auto obj : value.as_object()) {
if (obj.key() == "mean_stat") {
LOG(INFO) << "mean_stat:" << obj.value();
}
// LOG(INFO) << mean_stat; this line will casue
// simdjson::simdjson_error("Objects and arrays can only be iterated
// when
// they are first encountered")
ondemand::array var_stat = val["var_stat"];
std::vector<kaldi::BaseFloat> var_stat_vec;
for (double x : var_stat) {
var_stat_vec.push_back(x);
if (obj.key() == "var_stat") {
LOG(INFO) << "var_stat: " << obj.value();
}
kaldi::int32 frame_num = uint64_t(val["frame_num"]);
LOG(INFO) << "nframe: " << frame_num;
size_t mean_size = mean_stat_vec.size();
kaldi::Matrix<double> cmvn_stats(2, mean_size + 1);
for (size_t idx = 0; idx < mean_size; ++idx) {
cmvn_stats(0, idx) = mean_stat_vec[idx];
cmvn_stats(1, idx) = var_stat_vec[idx];
if (obj.key() == "frame_num") {
LOG(INFO) << "frame_num: " << obj.value();
}
cmvn_stats(0, mean_size) = frame_num;
LOG(INFO) << cmvn_stats;
}
boost::json::array mean_stat = value.at("mean_stat").as_array();
std::vector<kaldi::BaseFloat> mean_stat_vec;
for (auto it = mean_stat.begin(); it != mean_stat.end(); it++) {
mean_stat_vec.push_back(it->as_double());
}
kaldi::WriteKaldiObject(
cmvn_stats, FLAGS_cmvn_write_path, FLAGS_binary);
LOG(INFO) << "cmvn stats have write into: " << FLAGS_cmvn_write_path;
LOG(INFO) << "Binary: " << FLAGS_binary;
} catch (simdjson::simdjson_error& err) {
LOG(ERROR) << err.what();
boost::json::array var_stat = value.at("var_stat").as_array();
std::vector<kaldi::BaseFloat> var_stat_vec;
for (auto it = var_stat.begin(); it != var_stat.end(); it++) {
var_stat_vec.push_back(it->as_double());
}
kaldi::int32 frame_num = uint64_t(value.at("frame_num").as_int64());
LOG(INFO) << "nframe: " << frame_num;
size_t mean_size = mean_stat_vec.size();
kaldi::Matrix<double> cmvn_stats(2, mean_size + 1);
for (size_t idx = 0; idx < mean_size; ++idx) {
cmvn_stats(0, idx) = mean_stat_vec[idx];
cmvn_stats(1, idx) = var_stat_vec[idx];
}
cmvn_stats(0, mean_size) = frame_num;
LOG(INFO) << cmvn_stats;
kaldi::WriteKaldiObject(cmvn_stats, FLAGS_cmvn_write_path, FLAGS_binary);
LOG(INFO) << "cmvn stats have write into: " << FLAGS_cmvn_write_path;
LOG(INFO) << "Binary: " << FLAGS_binary;
return 0;
}
......@@ -2,6 +2,7 @@
import argparse
from collections import Counter
def main(args):
counter = Counter()
with open(args.text, 'r') as fin, open(args.lexicon, 'w') as fout:
......@@ -12,7 +13,7 @@ def main(args):
words = text.split()
else:
words = line.split()
counter.update(words)
for word in counter:
......@@ -20,21 +21,16 @@ def main(args):
fout.write(f"{word}\t{val}\n")
fout.flush()
if __name__ == '__main__':
parser = argparse.ArgumentParser(
description='text(line:utt1 中国 人) to lexicon(line:中国 中 国).')
parser.add_argument(
'--has_key',
default=True,
help='text path, with utt or not')
'--has_key', default=True, help='text path, with utt or not')
parser.add_argument(
'--text',
required=True,
help='text path. line: utt1 中国 人 or 中国 人')
'--text', required=True, help='text path. line: utt1 中国 人 or 中国 人')
parser.add_argument(
'--lexicon',
required=True,
help='lexicon path. line:中国 中 国')
'--lexicon', required=True, help='lexicon path. line:中国 中 国')
args = parser.parse_args()
print(args)
......
......@@ -183,4 +183,4 @@ data/
├── lexiconp_disambig.txt
├── lexiconp.txt
└── units.list
```
\ No newline at end of file
```
......@@ -26,9 +26,9 @@ import argparse
import os
import re
import subprocess
from distutils.util import strtobool
import numpy as np
from distutils.util import strtobool
FILE_IDS = re.compile(r"(?<=Speaker Diarization for).+(?=\*\*\*)")
SCORED_SPEAKER_TIME = re.compile(r"(?<=SCORED SPEAKER TIME =)[\d.]+")
......
此差异已折叠。
import os
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import jsonlines
def trans_hyp(origin_hyp,
trans_hyp = None,
trans_hyp_sclite = None):
def trans_hyp(origin_hyp, trans_hyp=None, trans_hyp_sclite=None):
"""
Args:
origin_hyp: The input json file which contains the model output
......@@ -17,19 +27,18 @@ def trans_hyp(origin_hyp,
with open(origin_hyp, "r+", encoding="utf8") as f:
for item in jsonlines.Reader(f):
input_dict[item["utt"]] = item["hyps"][0]
if trans_hyp is not None:
if trans_hyp is not None:
with open(trans_hyp, "w+", encoding="utf8") as f:
for key in input_dict.keys():
f.write(key + " " + input_dict[key] + "\n")
if trans_hyp_sclite is not None:
if trans_hyp_sclite is not None:
with open(trans_hyp_sclite, "w+") as f:
for key in input_dict.keys():
line = input_dict[key] + "(" + key + ".wav" +")" + "\n"
line = input_dict[key] + "(" + key + ".wav" + ")" + "\n"
f.write(line)
def trans_ref(origin_ref,
trans_ref = None,
trans_ref_sclite = None):
def trans_ref(origin_ref, trans_ref=None, trans_ref_sclite=None):
"""
Args:
origin_hyp: The input json file which contains the model output
......@@ -49,42 +58,48 @@ def trans_ref(origin_ref,
if trans_ref_sclite is not None:
with open(trans_ref_sclite, "w") as f:
for key in input_dict.keys():
line = input_dict[key] + "(" + key + ".wav" +")" + "\n"
line = input_dict[key] + "(" + key + ".wav" + ")" + "\n"
f.write(line)
if __name__ == "__main__":
parser = argparse.ArgumentParser(prog='format hyp file for compute CER/WER', add_help=True)
parser = argparse.ArgumentParser(
prog='format hyp file for compute CER/WER', add_help=True)
parser.add_argument(
'--origin_hyp',
type=str,
default = None,
help='origin hyp file')
'--origin_hyp', type=str, default=None, help='origin hyp file')
parser.add_argument(
'--trans_hyp', type=str, default = None, help='hyp file for caculating CER/WER')
'--trans_hyp',
type=str,
default=None,
help='hyp file for caculating CER/WER')
parser.add_argument(
'--trans_hyp_sclite', type=str, default = None, help='hyp file for caculating CER/WER by sclite')
'--trans_hyp_sclite',
type=str,
default=None,
help='hyp file for caculating CER/WER by sclite')
parser.add_argument(
'--origin_ref',
type=str,
default = None,
help='origin ref file')
'--origin_ref', type=str, default=None, help='origin ref file')
parser.add_argument(
'--trans_ref', type=str, default = None, help='ref file for caculating CER/WER')
'--trans_ref',
type=str,
default=None,
help='ref file for caculating CER/WER')
parser.add_argument(
'--trans_ref_sclite', type=str, default = None, help='ref file for caculating CER/WER by sclite')
'--trans_ref_sclite',
type=str,
default=None,
help='ref file for caculating CER/WER by sclite')
parser_args = parser.parse_args()
if parser_args.origin_hyp is not None:
trans_hyp(
origin_hyp = parser_args.origin_hyp,
trans_hyp = parser_args.trans_hyp,
trans_hyp_sclite = parser_args.trans_hyp_sclite, )
origin_hyp=parser_args.origin_hyp,
trans_hyp=parser_args.trans_hyp,
trans_hyp_sclite=parser_args.trans_hyp_sclite, )
if parser_args.origin_ref is not None:
trans_ref(
origin_ref = parser_args.origin_ref,
trans_ref = parser_args.trans_ref,
trans_ref_sclite = parser_args.trans_ref_sclite, )
origin_ref=parser_args.origin_ref,
trans_ref=parser_args.trans_ref,
trans_ref_sclite=parser_args.trans_ref_sclite, )
......@@ -35,7 +35,7 @@ def main(args):
# used to filter polyphone and invalid word
lexicon_table = set()
in_n = 0 # in lexicon word count
out_n = 0 # out lexicon word cout
out_n = 0 # out lexicon word cout
with open(args.in_lexicon, 'r') as fin, \
open(args.out_lexicon, 'w') as fout:
for line in fin:
......@@ -82,7 +82,10 @@ def main(args):
lexicon_table.add(word)
out_n += 1
print(f"Filter lexicon by unit table: filter out {in_n - out_n}, {out_n}/{in_n}")
print(
f"Filter lexicon by unit table: filter out {in_n - out_n}, {out_n}/{in_n}"
)
if __name__ == '__main__':
parser = argparse.ArgumentParser(
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册