提交 fcd91c62 编写于 作者: H Hui Zhang

add decoder

上级 63d78c88
......@@ -49,10 +49,18 @@ if not hasattr(paddle, 'softmax'):
logger.warn("register user softmax to paddle, remove this when fixed!")
setattr(paddle, 'softmax', paddle.nn.functional.softmax)
if not hasattr(paddle, 'log_softmax'):
logger.warn("register user log_softmax to paddle, remove this when fixed!")
setattr(paddle, 'log_softmax', paddle.nn.functional.log_softmax)
if not hasattr(paddle, 'sigmoid'):
logger.warn("register user sigmoid to paddle, remove this when fixed!")
setattr(paddle, 'sigmoid', paddle.nn.functional.sigmoid)
if not hasattr(paddle, 'log_sigmoid'):
logger.warn("register user log_sigmoid to paddle, remove this when fixed!")
setattr(paddle, 'log_sigmoid', paddle.nn.functional.log_sigmoid)
if not hasattr(paddle, 'relu'):
logger.warn("register user relu to paddle, remove this when fixed!")
setattr(paddle, 'relu', paddle.nn.functional.relu)
......
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Decoder definition."""
from typing import Tuple, List, Optional
from typeguard import check_argument_types
import logging
import paddle
from paddle import nn
from paddle.nn import functional as F
from paddle.nn import initializer as I
from deepspeech.modules.attention import MultiHeadedAttention
from deepspeech.modules.decoder_layer import DecoderLayer
from deepspeech.modules.embedding import PositionalEncoding
from deepspeech.modules.positionwise_feed_forward import PositionwiseFeedForward
from deepspeech.modules.mask import subsequent_mask
from deepspeech.modules.mask import make_pad_mask
logger = logging.getLogger(__name__)
__all__ = ["TransformerDecoder"]
class TransformerDecoder(nn.Module):
"""Base class of Transfomer decoder module.
Args:
vocab_size: output dim
encoder_output_size: dimension of attention
attention_heads: the number of heads of multi head attention
linear_units: the hidden units number of position-wise feedforward
num_blocks: the number of decoder blocks
dropout_rate: dropout rate
self_attention_dropout_rate: dropout rate for attention
input_layer: input layer type, `embed`
use_output_layer: whether to use output layer
pos_enc_class: PositionalEncoding module
normalize_before:
True: use layer_norm before each sub-block of a layer.
False: use layer_norm after each sub-block of a layer.
concat_after: whether to concat attention layer's input and output
True: x -> x + linear(concat(x, att(x)))
False: x -> x + att(x)
"""
def __init__(
self,
vocab_size: int,
encoder_output_size: int,
attention_heads: int=4,
linear_units: int=2048,
num_blocks: int=6,
dropout_rate: float=0.1,
positional_dropout_rate: float=0.1,
self_attention_dropout_rate: float=0.0,
src_attention_dropout_rate: float=0.0,
input_layer: str="embed",
use_output_layer: bool=True,
normalize_before: bool=True,
concat_after: bool=False, ):
assert check_argument_types()
super().__init__()
attention_dim = encoder_output_size
if input_layer == "embed":
self.embed = nn.Sequential(
nn.Embedding(vocab_size, attention_dim),
PositionalEncoding(attention_dim, positional_dropout_rate), )
else:
raise ValueError(f"only 'embed' is supported: {input_layer}")
self.normalize_before = normalize_before
self.after_norm = nn.LayerNorm(attention_dim, epsilon=1e-12)
self.use_output_layer = use_output_layer
self.output_layer = nn.Linear(attention_dim, vocab_size)
self.decoders = nn.ModuleList([
DecoderLayer(
size=attention_dim,
self_attn=MultiHeadedAttention(attention_heads, attention_dim,
self_attention_dropout_rate),
src_attn=MultiHeadedAttention(attention_heads, attention_dim,
src_attention_dropout_rate),
feed_forward=PositionwiseFeedForward(
attention_dim, linear_units, dropout_rate),
dropout_rate=dropout_rate,
normalize_before=normalize_before,
concat_after=concat_after, ) for _ in range(num_blocks)
])
def forward(
self,
memory: paddle.Tensor,
memory_mask: paddle.Tensor,
ys_in_pad: paddle.Tensor,
ys_in_lens: paddle.Tensor, ) -> Tuple[paddle.Tensor, paddle.Tensor]:
"""Forward decoder.
Args:
memory: encoded memory, float32 (batch, maxlen_in, feat)
memory_mask: encoder memory mask, (batch, 1, maxlen_in)
ys_in_pad: padded input token ids, int64 (batch, maxlen_out)
ys_in_lens: input lengths of this batch (batch)
Returns:
(tuple): tuple containing:
x: decoded token score before softmax (batch, maxlen_out, vocab_size)
if use_output_layer is True,
olens: (batch, )
"""
tgt = ys_in_pad
# tgt_mask: (B, 1, L)
tgt_mask = (make_non_pad_mask(ys_in_lens).unsqueeze(1))
# m: (1, L, L)
m = subsequent_mask(tgt_mask.size(-1)).unsqueeze(0)
# tgt_mask: (B, L, L)
tgt_mask = tgt_mask & m
x, _ = self.embed(tgt)
for layer in self.decoders:
x, tgt_mask, memory, memory_mask = layer(x, tgt_mask, memory,
memory_mask)
if self.normalize_before:
x = self.after_norm(x)
if self.use_output_layer:
x = self.output_layer(x)
olens = tgt_mask.sum(1)
return x, olens
def forward_one_step(
self,
memory: paddle.Tensor,
memory_mask: paddle.Tensor,
tgt: paddle.Tensor,
tgt_mask: paddle.Tensor,
cache: Optional[List[paddle.Tensor]]=None,
) -> Tuple[paddle.Tensor, List[paddle.Tensor]]:
"""Forward one step.
This is only used for decoding.
Args:
memory: encoded memory, float32 (batch, maxlen_in, feat)
memory_mask: encoded memory mask, (batch, 1, maxlen_in)
tgt: input token ids, int64 (batch, maxlen_out)
tgt_mask: input token mask, (batch, maxlen_out)
dtype=paddle.bool
cache: cached output list of (batch, max_time_out-1, size)
Returns:
y, cache: NN output value and cache per `self.decoders`.
y.shape` is (batch, maxlen_out, token)
"""
x, _ = self.embed(tgt)
new_cache = []
for i, decoder in enumerate(self.decoders):
if cache is None:
c = None
else:
c = cache[i]
x, tgt_mask, memory, memory_mask = decoder(
x, tgt_mask, memory, memory_mask, cache=c)
new_cache.append(x)
if self.normalize_before:
y = self.after_norm(x[:, -1])
else:
y = x[:, -1]
if self.use_output_layer:
y = paddle.log_softmax(self.output_layer(y), dim=-1)
return y, new_cache
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Decoder self-attention layer definition."""
from typing import Optional, Tuple
import logging
import paddle
from paddle import nn
from paddle.nn import functional as F
from paddle.nn import initializer as I
logger = logging.getLogger(__name__)
__all__ = ["DecoderLayer"]
class DecoderLayer(nn.Module):
"""Single decoder layer module.
Args:
size (int): Input dimension.
self_attn (nn.Module): Self-attention module instance.
`MultiHeadedAttention` instance can be used as the argument.
src_attn (nn.Module): Self-attention module instance.
`MultiHeadedAttention` instance can be used as the argument.
feed_forward (nn.Module): Feed-forward module instance.
`PositionwiseFeedForward` instance can be used as the argument.
dropout_rate (float): Dropout rate.
normalize_before (bool):
True: use layer_norm before each sub-block.
False: to use layer_norm after each sub-block.
concat_after (bool): Whether to concat attention layer's input
and output.
True: x -> x + linear(concat(x, att(x)))
False: x -> x + att(x)
"""
def __init__(
self,
size: int,
self_attn: nn.Module,
src_attn: nn.Module,
feed_forward: nn.Module,
dropout_rate: float,
normalize_before: bool=True,
concat_after: bool=False, ):
"""Construct an DecoderLayer object."""
super().__init__()
self.size = size
self.self_attn = self_attn
self.src_attn = src_attn
self.feed_forward = feed_forward
self.norm1 = nn.LayerNorm(size, epsilon=1e-12)
self.norm2 = nn.LayerNorm(size, epsilon=1e-12)
self.norm3 = nn.LayerNorm(size, epsilon=1e-12)
self.dropout = nn.Dropout(dropout_rate)
self.normalize_before = normalize_before
self.concat_after = concat_after
self.concat_linear1 = nn.Linear(size + size, size)
self.concat_linear2 = nn.Linear(size + size, size)
def forward(
self,
tgt: paddle.Tensor,
tgt_mask: paddle.Tensor,
memory: paddle.Tensor,
memory_mask: paddle.Tensor,
cache: Optional[paddle.Tensor]=None
) -> Tuple[paddle.Tensor, paddle.Tensor, paddle.Tensor, paddle.Tensor]:
"""Compute decoded features.
Args:
tgt (paddle.Tensor): Input tensor (#batch, maxlen_out, size).
tgt_mask (paddle.Tensor): Mask for input tensor
(#batch, maxlen_out).
memory (paddle.Tensor): Encoded memory
(#batch, maxlen_in, size).
memory_mask (paddle.Tensor): Encoded memory mask
(#batch, maxlen_in).
cache (paddle.Tensor): cached tensors.
(#batch, maxlen_out - 1, size).
Returns:
paddle.Tensor: Output tensor (#batch, maxlen_out, size).
paddle.Tensor: Mask for output tensor (#batch, maxlen_out).
paddle.Tensor: Encoded memory (#batch, maxlen_in, size).
paddle.Tensor: Encoded memory mask (#batch, maxlen_in).
"""
residual = tgt
if self.normalize_before:
tgt = self.norm1(tgt)
if cache is None:
tgt_q = tgt
tgt_q_mask = tgt_mask
else:
# compute only the last frame query keeping dim: max_time_out -> 1
assert cache.shape == (
tgt.shape[0], tgt.shape[1] - 1, self.size,
), "{cache.shape} == {(tgt.shape[0], tgt.shape[1] - 1, self.size)}"
tgt_q = tgt[:, -1:, :]
residual = residual[:, -1:, :]
tgt_q_mask = tgt_mask[:, -1:, :]
if self.concat_after:
tgt_concat = paddle.cat(
(tgt_q, self.self_attn(tgt_q, tgt, tgt, tgt_q_mask)), dim=-1)
x = residual + self.concat_linear1(tgt_concat)
else:
x = residual + self.dropout(
self.self_attn(tgt_q, tgt, tgt, tgt_q_mask))
if not self.normalize_before:
x = self.norm1(x)
residual = x
if self.normalize_before:
x = self.norm2(x)
if self.concat_after:
x_concat = paddle.cat(
(x, self.src_attn(x, memory, memory, memory_mask)), dim=-1)
x = residual + self.concat_linear2(x_concat)
else:
x = residual + self.dropout(
self.src_attn(x, memory, memory, memory_mask))
if not self.normalize_before:
x = self.norm2(x)
residual = x
if self.normalize_before:
x = self.norm3(x)
x = residual + self.dropout(self.feed_forward(x))
if not self.normalize_before:
x = self.norm3(x)
if cache is not None:
x = paddle.cat([cache, x], dim=1)
return x, tgt_mask, memory, memory_mask
......@@ -50,8 +50,7 @@ def sequence_mask(x_len, max_len=None, dtype='float32'):
return mask
def subsequent_mask(
size: int, ) -> paddle.Tensor:
def subsequent_mask(size: int) -> paddle.Tensor:
"""Create mask for subsequent steps (size, size).
This mask is used only in decoder which works in an auto-regressive mode.
This means the current step could only do attention with its left steps.
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册