未验证 提交 f8c7b107 编写于 作者: J Jackwaterveg 提交者: GitHub

Update released_model.md

上级 4b225b76
# Released Models
## Acoustic Model Released in paddle 2.X
Acoustic Model | Training Data | Token-based | Size | Descriptions | CER or WER | Hours of speech
:-------------:| :------------:| :-----: | -----: | :----------------- | :---------- | :---------
[Ds2 Online Aishell Model](https://deepspeech.bj.bcebos.com/release2.1/aishell/s0/aishell.s0.ds_online.5rnn.debug.tar.gz) | Aishell Dataset | Char-based | 345 MB | 2 Conv + 5 LSTM layers with only forward direction | 0.0824 | 151 h
[Ds2 Offline Aishell Model](https://deepspeech.bj.bcebos.com/release2.1/aishell/s0/aishell.s0.ds2.offline.cer6p65.release.tar.gz)| Aishell Dataset | Char-based | 306 MB | 2 Conv + 3 bidirectional GRU layers| 0.065 | 151 h
[Conformer Online Aishell Model](https://deepspeech.bj.bcebos.com/release2.1/aishell/s1/aishell.chunk.release.tar.gz) | Aishell Dataset | Char-based | 283 MB | Encoder:Conformer, Decoder:Transformer, Decoding method: Attention + CTC | 0.0594 | 151 h
[Conformer Offline Aishell Model](https://deepspeech.bj.bcebos.com/release2.1/aishell/s1/aishell.release.tar.gz) | Aishell Dataset | Char-based | 284 MB | Encoder:Conformer, Decoder:Transformer, Decoding method: Attention | 0.0547 | 151 h
[Conformer Librispeech Model](https://deepspeech.bj.bcebos.com/release2.1/librispeech/s1/conformer.release.tar.gz) | Librispeech Dataset | Word-based | 287 MB | Encoder:Conformer, Decoder:Transformer, Decoding method: Attention | 0.0325 | 960 h
[Transformer Librispeech Model](https://deepspeech.bj.bcebos.com/release2.1/librispeech/s1/transformer.release.tar.gz) | Librispeech Dataset | Word-based | 195 MB | Encoder:Conformer, Decoder:Transformer, Decoding method: Attention | 0.0544 | 960 h
Acoustic Model | Training Data | Token-based | Size | Descriptions | CER | WER | Hours of speech
:-------------:| :------------:| :-----: | -----: | :----------------- |:--------- | :---------- | :---------
[Ds2 Online Aishell Model](https://deepspeech.bj.bcebos.com/release2.1/aishell/s0/aishell.s0.ds_online.5rnn.debug.tar.gz) | Aishell Dataset | Char-based | 345 MB | 2 Conv + 5 LSTM layers with only forward direction | 0.0824 |-| 151 h
[Ds2 Offline Aishell Model](https://deepspeech.bj.bcebos.com/release2.1/aishell/s0/aishell.s0.ds2.offline.cer6p65.release.tar.gz)| Aishell Dataset | Char-based | 306 MB | 2 Conv + 3 bidirectional GRU layers| 0.065 |-| 151 h
[Conformer Online Aishell Model](https://deepspeech.bj.bcebos.com/release2.1/aishell/s1/aishell.chunk.release.tar.gz) | Aishell Dataset | Char-based | 283 MB | Encoder:Conformer, Decoder:Transformer, Decoding method: Attention + CTC | 0.0594 |-| 151 h
[Conformer Offline Aishell Model](https://deepspeech.bj.bcebos.com/release2.1/aishell/s1/aishell.release.tar.gz) | Aishell Dataset | Char-based | 284 MB | Encoder:Conformer, Decoder:Transformer, Decoding method: Attention | 0.0547 |-| 151 h
[Conformer Librispeech Model](https://deepspeech.bj.bcebos.com/release2.1/librispeech/s1/conformer.release.tar.gz) | Librispeech Dataset | Word-based | 287 MB | Encoder:Conformer, Decoder:Transformer, Decoding method: Attention |-| 0.0325 | 960 h
[Transformer Librispeech Model](https://deepspeech.bj.bcebos.com/release2.1/librispeech/s1/transformer.release.tar.gz) | Librispeech Dataset | Word-based | 195 MB | Encoder:Conformer, Decoder:Transformer, Decoding method: Attention |-| 0.0544 | 960 h
## Acoustic Model Transformed from paddle 1.8
Acoustic Model | Training Data | Token-based | Size | Descriptions | CER or WER | Hours of speech
:-------------:| :------------:| :-----: | -----: | :----------------- | :---------- | :---------
[Ds2 Offline Aishell model](https://deepspeech.bj.bcebos.com/mandarin_models/aishell_model_v1.8_to_v2.x.tar.gz)|Aishell Dataset| Char-based| 234 MB| 2 Conv + 3 bidirectional GRU layers| 0.0804 | 151 h|
[Ds2 Offline Librispeech model](https://deepspeech.bj.bcebos.com/eng_models/librispeech_v1.8_to_v2.x.tar.gz)|Librispeech Dataset| Word-based| 307 MB| 2 Conv + 3 bidirectional sharing weight RNN layers | 0.0685| 960 h|
[Ds2 Offline Baidu en8k model](https://deepspeech.bj.bcebos.com/eng_models/baidu_en8k_v1.8_to_v2.x.tar.gz)|Baidu Internal English Dataset| Word-based| 273 MB| 2 Conv + 3 bidirectional GRU layers | 0.0541 | 8628 h|
Acoustic Model | Training Data | Token-based | Size | Descriptions | CER | WER | Hours of speech
:-------------:| :------------:| :-----: | -----: | :----------------- | :---------- | :---------- | :---------
[Ds2 Offline Aishell model](https://deepspeech.bj.bcebos.com/mandarin_models/aishell_model_v1.8_to_v2.x.tar.gz)|Aishell Dataset| Char-based| 234 MB| 2 Conv + 3 bidirectional GRU layers| 0.0804 |-| 151 h|
[Ds2 Offline Librispeech model](https://deepspeech.bj.bcebos.com/eng_models/librispeech_v1.8_to_v2.x.tar.gz)|Librispeech Dataset| Word-based| 307 MB| 2 Conv + 3 bidirectional sharing weight RNN layers |-| 0.0685| 960 h|
[Ds2 Offline Baidu en8k model](https://deepspeech.bj.bcebos.com/eng_models/baidu_en8k_v1.8_to_v2.x.tar.gz)|Baidu Internal English Dataset| Word-based| 273 MB| 2 Conv + 3 bidirectional GRU layers |-| 0.0541 | 8628 h|
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册