Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
DeepSpeech
提交
e5641ca4
D
DeepSpeech
项目概览
PaddlePaddle
/
DeepSpeech
大约 2 年 前同步成功
通知
210
Star
8425
Fork
1598
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
245
列表
看板
标记
里程碑
合并请求
3
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
D
DeepSpeech
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
245
Issue
245
列表
看板
标记
里程碑
合并请求
3
合并请求
3
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
e5641ca4
编写于
4月 01, 2021
作者:
H
Hui Zhang
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
fix bugs, refactor collator, add pad_sequence, fix ckpt bugs
上级
944457d6
变更
10
展开全部
隐藏空白更改
内联
并排
Showing
10 changed file
with
880 addition
and
55 deletion
+880
-55
deepspeech/__init__.py
deepspeech/__init__.py
+93
-0
deepspeech/io/collator.py
deepspeech/io/collator.py
+39
-30
deepspeech/io/utility.py
deepspeech/io/utility.py
+82
-0
deepspeech/models/deepspeech2.py
deepspeech/models/deepspeech2.py
+5
-9
deepspeech/models/u2.py
deepspeech/models/u2.py
+638
-0
deepspeech/modules/conv.py
deepspeech/modules/conv.py
+3
-2
deepspeech/modules/rnn.py
deepspeech/modules/rnn.py
+1
-1
deepspeech/training/trainer.py
deepspeech/training/trainer.py
+10
-8
deepspeech/utils/checkpoint.py
deepspeech/utils/checkpoint.py
+8
-5
deepspeech/utils/utility.py
deepspeech/utils/utility.py
+1
-0
未找到文件。
deepspeech/__init__.py
浏览文件 @
e5641ca4
...
@@ -13,6 +13,9 @@
...
@@ -13,6 +13,9 @@
# limitations under the License.
# limitations under the License.
import
logging
import
logging
from
typing
import
Union
from
typing
import
Union
from
typing
import
Optional
from
typing
import
List
from
typing
import
Tuple
from
typing
import
Any
from
typing
import
Any
import
paddle
import
paddle
...
@@ -83,6 +86,20 @@ if not hasattr(paddle.Tensor, 'numel'):
...
@@ -83,6 +86,20 @@ if not hasattr(paddle.Tensor, 'numel'):
paddle
.
Tensor
.
numel
=
paddle
.
numel
paddle
.
Tensor
.
numel
=
paddle
.
numel
def
new_full
(
x
:
paddle
.
Tensor
,
size
:
Union
[
List
[
int
],
Tuple
[
int
],
paddle
.
Tensor
],
fill_value
:
Union
[
float
,
int
,
bool
,
paddle
.
Tensor
],
dtype
=
None
):
return
paddle
.
full
(
size
,
fill_value
,
dtype
=
x
.
dtype
)
if
not
hasattr
(
paddle
.
Tensor
,
'new_full'
):
logger
.
warn
(
"override new_full of paddle.Tensor if exists or register, remove this when fixed!"
)
paddle
.
Tensor
.
new_full
=
new_full
def
eq
(
xs
:
paddle
.
Tensor
,
ys
:
Union
[
paddle
.
Tensor
,
float
])
->
paddle
.
Tensor
:
def
eq
(
xs
:
paddle
.
Tensor
,
ys
:
Union
[
paddle
.
Tensor
,
float
])
->
paddle
.
Tensor
:
return
xs
.
equal
(
paddle
.
to_tensor
(
ys
,
dtype
=
xs
.
dtype
,
place
=
xs
.
place
))
return
xs
.
equal
(
paddle
.
to_tensor
(
ys
,
dtype
=
xs
.
dtype
,
place
=
xs
.
place
))
...
@@ -279,6 +296,7 @@ if not hasattr(paddle.nn, 'Module'):
...
@@ -279,6 +296,7 @@ if not hasattr(paddle.nn, 'Module'):
logger
.
warn
(
"register user Module to paddle.nn, remove this when fixed!"
)
logger
.
warn
(
"register user Module to paddle.nn, remove this when fixed!"
)
setattr
(
paddle
.
nn
,
'Module'
,
paddle
.
nn
.
Layer
)
setattr
(
paddle
.
nn
,
'Module'
,
paddle
.
nn
.
Layer
)
# maybe cause assert isinstance(sublayer, core.Layer)
if
not
hasattr
(
paddle
.
nn
,
'ModuleList'
):
if
not
hasattr
(
paddle
.
nn
,
'ModuleList'
):
logger
.
warn
(
logger
.
warn
(
"register user ModuleList to paddle.nn, remove this when fixed!"
)
"register user ModuleList to paddle.nn, remove this when fixed!"
)
...
@@ -332,3 +350,78 @@ if not hasattr(paddle.nn, 'ConstantPad2d'):
...
@@ -332,3 +350,78 @@ if not hasattr(paddle.nn, 'ConstantPad2d'):
logger
.
warn
(
logger
.
warn
(
"register user ConstantPad2d to paddle.nn, remove this when fixed!"
)
"register user ConstantPad2d to paddle.nn, remove this when fixed!"
)
setattr
(
paddle
.
nn
,
'ConstantPad2d'
,
ConstantPad2d
)
setattr
(
paddle
.
nn
,
'ConstantPad2d'
,
ConstantPad2d
)
########### hcak paddle.jit #############
if
not
hasattr
(
paddle
.
jit
,
'export'
):
logger
.
warn
(
"register user export to paddle.jit, remove this when fixed!"
)
setattr
(
paddle
.
jit
,
'export'
,
paddle
.
jit
.
to_static
)
########### hcak paddle.nn.utils #############
def
pad_sequence
(
sequences
:
List
[
paddle
.
Tensor
],
batch_first
:
bool
=
False
,
padding_value
:
float
=
0.0
)
->
paddle
.
Tensor
:
r
"""Pad a list of variable length Tensors with ``padding_value``
``pad_sequence`` stacks a list of Tensors along a new dimension,
and pads them to equal length. For example, if the input is list of
sequences with size ``L x *`` and if batch_first is False, and ``T x B x *``
otherwise.
`B` is batch size. It is equal to the number of elements in ``sequences``.
`T` is length of the longest sequence.
`L` is length of the sequence.
`*` is any number of trailing dimensions, including none.
Example:
>>> from paddle.nn.utils.rnn import pad_sequence
>>> a = paddle.ones(25, 300)
>>> b = paddle.ones(22, 300)
>>> c = paddle.ones(15, 300)
>>> pad_sequence([a, b, c]).size()
paddle.Tensor([25, 3, 300])
Note:
This function returns a Tensor of size ``T x B x *`` or ``B x T x *``
where `T` is the length of the longest sequence. This function assumes
trailing dimensions and type of all the Tensors in sequences are same.
Args:
sequences (list[Tensor]): list of variable length sequences.
batch_first (bool, optional): output will be in ``B x T x *`` if True, or in
``T x B x *`` otherwise
padding_value (float, optional): value for padded elements. Default: 0.
Returns:
Tensor of size ``T x B x *`` if :attr:`batch_first` is ``False``.
Tensor of size ``B x T x *`` otherwise
"""
# assuming trailing dimensions and type of all the Tensors
# in sequences are same and fetching those from sequences[0]
max_size
=
sequences
[
0
].
size
()
trailing_dims
=
max_size
[
1
:]
max_len
=
max
([
s
.
size
(
0
)
for
s
in
sequences
])
if
batch_first
:
out_dims
=
(
len
(
sequences
),
max_len
)
+
trailing_dims
else
:
out_dims
=
(
max_len
,
len
(
sequences
))
+
trailing_dims
out_tensor
=
sequences
[
0
].
new_full
(
out_dims
,
padding_value
)
for
i
,
tensor
in
enumerate
(
sequences
):
length
=
tensor
.
size
(
0
)
# use index notation to prevent duplicate references to the tensor
if
batch_first
:
out_tensor
[
i
,
:
length
,
...]
=
tensor
else
:
out_tensor
[:
length
,
i
,
...]
=
tensor
return
out_tensor
if
not
hasattr
(
paddle
.
nn
.
utils
,
'rnn.pad_sequence'
):
logger
.
warn
(
"register user rnn.pad_sequence to paddle.nn.utils, remove this when fixed!"
)
setattr
(
paddle
.
nn
.
utils
,
'rnn.pad_sequence'
,
pad_sequence
)
deepspeech/io/collator.py
浏览文件 @
e5641ca4
...
@@ -16,15 +16,15 @@ import logging
...
@@ -16,15 +16,15 @@ import logging
import
numpy
as
np
import
numpy
as
np
from
collections
import
namedtuple
from
collections
import
namedtuple
from
deepspeech.io.utility
import
pad_sequence
logger
=
logging
.
getLogger
(
__name__
)
logger
=
logging
.
getLogger
(
__name__
)
__all__
=
[
__all__
=
[
"SpeechCollator"
]
"SpeechCollator"
,
]
class
SpeechCollator
():
class
SpeechCollator
():
def
__init__
(
self
,
padding_to
=-
1
,
is_training
=
True
):
def
__init__
(
self
,
is_training
=
True
):
"""
"""
Padding audio features with zeros to make them have the same shape (or
Padding audio features with zeros to make them have the same shape (or
a user-defined shape) within one bach.
a user-defined shape) within one bach.
...
@@ -32,42 +32,51 @@ class SpeechCollator():
...
@@ -32,42 +32,51 @@ class SpeechCollator():
If ``padding_to`` is -1, the maximun shape in the batch will be used
If ``padding_to`` is -1, the maximun shape in the batch will be used
as the target shape for padding. Otherwise, `padding_to` will be the
as the target shape for padding. Otherwise, `padding_to` will be the
target shape (only refers to the second axis).
target shape (only refers to the second axis).
if ``is_training`` is True, text is token ids else is raw string.
"""
"""
self
.
_padding_to
=
padding_to
self
.
_is_training
=
is_training
self
.
_is_training
=
is_training
def
__call__
(
self
,
batch
):
def
__call__
(
self
,
batch
):
new_batch
=
[]
"""batch examples
# get target shape
max_length
=
max
([
audio
.
shape
[
1
]
for
audio
,
_
in
batch
])
Args:
if
self
.
_padding_to
!=
-
1
:
batch ([List]): batch is (audio, text)
if
self
.
_padding_to
<
max_length
:
audio (np.ndarray) shape (D, T)
raise
ValueError
(
"If padding_to is not -1, it should be larger "
text (List[int] or str): shape (U,)
"than any instance's shape in the batch"
)
max_length
=
self
.
_padding_to
Returns:
max_text_length
=
max
([
len
(
text
)
for
_
,
text
in
batch
])
tuple(audio, text, audio_lens, text_lens): batched data.
# padding
audio : (B, Tmax, D)
padded_audios
=
[]
text : (B, Umax)
audio_lens: (B)
text_lens: (B)
"""
audios
=
[]
audio_lens
=
[]
audio_lens
=
[]
texts
,
text_lens
=
[],
[]
texts
=
[]
text_lens
=
[]
for
audio
,
text
in
batch
:
for
audio
,
text
in
batch
:
# audio
# audio
padded_audio
=
np
.
zeros
([
audio
.
shape
[
0
],
max_length
])
audios
.
append
(
audio
.
T
)
# [T, D]
padded_audio
[:,
:
audio
.
shape
[
1
]]
=
audio
padded_audios
.
append
(
padded_audio
)
audio_lens
.
append
(
audio
.
shape
[
1
])
audio_lens
.
append
(
audio
.
shape
[
1
])
# text
# text
padded_text
=
np
.
zeros
([
max_text_length
])
# for training, text is token ids
# else text is string, convert to unicode ord
tokens
=
[]
if
self
.
_is_training
:
if
self
.
_is_training
:
padded_text
[:
len
(
text
)]
=
text
# token ids
tokens
=
text
# token ids
else
:
else
:
padded_text
[:
len
(
text
)]
=
[
ord
(
t
)
assert
isinstance
(
text
,
str
)
for
t
in
text
]
# string, unicode ord
tokens
=
[
ord
(
t
)
for
t
in
text
]
texts
.
append
(
padded_text
)
tokens
=
tokens
if
isinstance
(
tokens
,
np
.
ndarray
)
else
np
.
array
(
tokens
,
dtype
=
np
.
int64
)
texts
.
append
(
tokens
)
text_lens
.
append
(
len
(
text
))
text_lens
.
append
(
len
(
text
))
padded_audios
=
np
.
array
(
padded_audios
).
astype
(
'float32'
)
padded_audios
=
pad_sequence
(
audio_lens
=
np
.
array
(
audio_lens
).
astype
(
'int64'
)
audios
,
padding_value
=
0.0
).
astype
(
np
.
float32
)
#[B, T, D]
texts
=
np
.
array
(
texts
).
astype
(
'int32'
)
padded_texts
=
pad_sequence
(
texts
,
padding_value
=-
1
).
astype
(
np
.
int32
)
text_lens
=
np
.
array
(
text_lens
).
astype
(
'int64'
)
audio_lens
=
np
.
array
(
audio_lens
).
astype
(
np
.
int64
)
return
padded_audios
,
texts
,
audio_lens
,
text_lens
text_lens
=
np
.
array
(
text_lens
).
astype
(
np
.
int64
)
return
padded_audios
,
padded_texts
,
audio_lens
,
text_lens
deepspeech/io/utility.py
0 → 100644
浏览文件 @
e5641ca4
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
logging
import
numpy
as
np
from
collections
import
namedtuple
from
typing
import
List
logger
=
logging
.
getLogger
(
__name__
)
__all__
=
[
"pad_sequence"
]
def
pad_sequence
(
sequences
:
List
[
np
.
ndarray
],
batch_first
:
bool
=
True
,
padding_value
:
float
=
0.0
)
->
np
.
ndarray
:
r
"""Pad a list of variable length Tensors with ``padding_value``
``pad_sequence`` stacks a list of Tensors along a new dimension,
and pads them to equal length. For example, if the input is list of
sequences with size ``L x *`` and if batch_first is False, and ``T x B x *``
otherwise.
`B` is batch size. It is equal to the number of elements in ``sequences``.
`T` is length of the longest sequence.
`L` is length of the sequence.
`*` is any number of trailing dimensions, including none.
Example:
>>> a = np.ones([25, 300])
>>> b = np.ones([22, 300])
>>> c = np.ones([15, 300])
>>> pad_sequence([a, b, c]).shape
[25, 3, 300]
Note:
This function returns a np.ndarray of size ``T x B x *`` or ``B x T x *``
where `T` is the length of the longest sequence. This function assumes
trailing dimensions and type of all the Tensors in sequences are same.
Args:
sequences (list[np.ndarray]): list of variable length sequences.
batch_first (bool, optional): output will be in ``B x T x *`` if True, or in
``T x B x *`` otherwise
padding_value (float, optional): value for padded elements. Default: 0.
Returns:
np.ndarray of size ``T x B x *`` if :attr:`batch_first` is ``False``.
np.ndarray of size ``B x T x *`` otherwise
"""
# assuming trailing dimensions and type of all the Tensors
# in sequences are same and fetching those from sequences[0]
max_size
=
sequences
[
0
].
shape
trailing_dims
=
max_size
[
1
:]
max_len
=
max
([
s
.
shape
[
0
]
for
s
in
sequences
])
if
batch_first
:
out_dims
=
(
len
(
sequences
),
max_len
)
+
trailing_dims
else
:
out_dims
=
(
max_len
,
len
(
sequences
))
+
trailing_dims
out_tensor
=
np
.
full
(
out_dims
,
padding_value
,
dtype
=
sequences
[
0
].
dtype
)
for
i
,
tensor
in
enumerate
(
sequences
):
length
=
tensor
.
shape
[
0
]
# use index notation to prevent duplicate references to the tensor
if
batch_first
:
out_tensor
[
i
,
:
length
,
...]
=
tensor
else
:
out_tensor
[:
length
,
i
,
...]
=
tensor
return
out_tensor
deepspeech/models/deepspeech2.py
浏览文件 @
e5641ca4
...
@@ -11,7 +11,7 @@
...
@@ -11,7 +11,7 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# See the License for the specific language governing permissions and
# limitations under the License.
# limitations under the License.
"""Deepspeech2 ASR Model"""
import
math
import
math
import
collections
import
collections
import
numpy
as
np
import
numpy
as
np
...
@@ -67,23 +67,19 @@ class CRNNEncoder(nn.Layer):
...
@@ -67,23 +67,19 @@ class CRNNEncoder(nn.Layer):
return
self
.
rnn_size
*
2
return
self
.
rnn_size
*
2
def
forward
(
self
,
audio
,
audio_len
):
def
forward
(
self
,
audio
,
audio_len
):
"""
audio: shape [B, D, T]
text: shape [B, T]
audio_len: shape [B]
text_len: shape [B]
"""
"""Compute Encoder outputs
"""Compute Encoder outputs
Args:
Args:
audio (Tensor): [B,
D, T
]
audio (Tensor): [B,
Tmax, D
]
text (Tensor): [B,
T
]
text (Tensor): [B,
Umax
]
audio_len (Tensor): [B]
audio_len (Tensor): [B]
text_len (Tensor): [B]
text_len (Tensor): [B]
Returns:
Returns:
x (Tensor): encoder outputs, [B, T, D]
x (Tensor): encoder outputs, [B, T, D]
x_lens (Tensor): encoder length, [B]
x_lens (Tensor): encoder length, [B]
"""
"""
# [B, T, D] -> [B, D, T]
audio
=
audio
.
transpose
([
0
,
2
,
1
])
# [B, D, T] -> [B, C=1, D, T]
# [B, D, T] -> [B, C=1, D, T]
x
=
audio
.
unsqueeze
(
1
)
x
=
audio
.
unsqueeze
(
1
)
x_lens
=
audio_len
x_lens
=
audio_len
...
...
deepspeech/models/u2.py
0 → 100644
浏览文件 @
e5641ca4
此差异已折叠。
点击以展开。
deepspeech/modules/conv.py
浏览文件 @
e5641ca4
...
@@ -145,7 +145,7 @@ class ConvStack(nn.Layer):
...
@@ -145,7 +145,7 @@ class ConvStack(nn.Layer):
act
=
'brelu'
)
act
=
'brelu'
)
out_channel
=
32
out_channel
=
32
self
.
conv_stack
=
nn
.
Sequential
(
[
convs
=
[
ConvBn
(
ConvBn
(
num_channels_in
=
32
,
num_channels_in
=
32
,
num_channels_out
=
out_channel
,
num_channels_out
=
out_channel
,
...
@@ -153,7 +153,8 @@ class ConvStack(nn.Layer):
...
@@ -153,7 +153,8 @@ class ConvStack(nn.Layer):
stride
=
(
2
,
1
),
stride
=
(
2
,
1
),
padding
=
(
10
,
5
),
padding
=
(
10
,
5
),
act
=
'brelu'
)
for
i
in
range
(
num_stacks
-
1
)
act
=
'brelu'
)
for
i
in
range
(
num_stacks
-
1
)
])
]
self
.
conv_stack
=
nn
.
LayerList
(
convs
)
# conv output feat_dim
# conv output feat_dim
output_height
=
(
feat_size
-
1
)
//
2
+
1
output_height
=
(
feat_size
-
1
)
//
2
+
1
...
...
deepspeech/modules/rnn.py
浏览文件 @
e5641ca4
...
@@ -298,7 +298,7 @@ class RNNStack(nn.Layer):
...
@@ -298,7 +298,7 @@ class RNNStack(nn.Layer):
share_weights
=
share_rnn_weights
))
share_weights
=
share_rnn_weights
))
i_size
=
h_size
*
2
i_size
=
h_size
*
2
self
.
rnn_stacks
=
nn
.
Sequential
(
rnn_stacks
)
self
.
rnn_stacks
=
nn
.
ModuleList
(
rnn_stacks
)
def
forward
(
self
,
x
:
paddle
.
Tensor
,
x_len
:
paddle
.
Tensor
):
def
forward
(
self
,
x
:
paddle
.
Tensor
,
x_len
:
paddle
.
Tensor
):
"""
"""
...
...
deepspeech/training/trainer.py
浏览文件 @
e5641ca4
...
@@ -128,14 +128,15 @@ class Trainer():
...
@@ -128,14 +128,15 @@ class Trainer():
dist
.
init_parallel_env
()
dist
.
init_parallel_env
()
@
mp_tools
.
rank_zero_only
@
mp_tools
.
rank_zero_only
def
save
(
self
):
def
save
(
self
,
infos
=
None
):
"""Save checkpoint (model parameters and optimizer states).
"""Save checkpoint (model parameters and optimizer states).
"""
"""
infos
=
{
if
infos
is
None
:
"step"
:
self
.
iteration
,
infos
=
{
"epoch"
:
self
.
epoch
,
"step"
:
self
.
iteration
,
"lr"
:
self
.
optimizer
.
get_lr
(),
"epoch"
:
self
.
epoch
,
}
"lr"
:
self
.
optimizer
.
get_lr
(),
}
checkpoint
.
save_parameters
(
self
.
checkpoint_dir
,
self
.
iteration
,
checkpoint
.
save_parameters
(
self
.
checkpoint_dir
,
self
.
iteration
,
self
.
model
,
self
.
optimizer
,
infos
)
self
.
model
,
self
.
optimizer
,
infos
)
...
@@ -151,8 +152,9 @@ class Trainer():
...
@@ -151,8 +152,9 @@ class Trainer():
self
.
optimizer
,
self
.
optimizer
,
checkpoint_dir
=
self
.
checkpoint_dir
,
checkpoint_dir
=
self
.
checkpoint_dir
,
checkpoint_path
=
self
.
args
.
checkpoint_path
)
checkpoint_path
=
self
.
args
.
checkpoint_path
)
self
.
iteration
=
infos
[
"step"
]
if
infos
:
self
.
epoch
=
infos
[
"epoch"
]
self
.
iteration
=
infos
[
"step"
]
self
.
epoch
=
infos
[
"epoch"
]
def
new_epoch
(
self
):
def
new_epoch
(
self
):
"""Reset the train loader and increment ``epoch``.
"""Reset the train loader and increment ``epoch``.
...
...
deepspeech/utils/checkpoint.py
浏览文件 @
e5641ca4
...
@@ -36,11 +36,11 @@ def _load_latest_checkpoint(checkpoint_dir: str) -> int:
...
@@ -36,11 +36,11 @@ def _load_latest_checkpoint(checkpoint_dir: str) -> int:
Args:
Args:
checkpoint_dir (str): the directory where checkpoint is saved.
checkpoint_dir (str): the directory where checkpoint is saved.
Returns:
Returns:
int: the latest iteration number.
int: the latest iteration number.
-1 for no checkpoint to load.
"""
"""
checkpoint_record
=
os
.
path
.
join
(
checkpoint_dir
,
"checkpoint"
)
checkpoint_record
=
os
.
path
.
join
(
checkpoint_dir
,
"checkpoint"
)
if
not
os
.
path
.
isfile
(
checkpoint_record
):
if
not
os
.
path
.
isfile
(
checkpoint_record
):
return
0
return
-
1
# Fetch the latest checkpoint index.
# Fetch the latest checkpoint index.
with
open
(
checkpoint_record
,
"rt"
)
as
handle
:
with
open
(
checkpoint_record
,
"rt"
)
as
handle
:
...
@@ -79,11 +79,15 @@ def load_parameters(model,
...
@@ -79,11 +79,15 @@ def load_parameters(model,
Returns:
Returns:
configs (dict): epoch or step, lr and other meta info should be saved.
configs (dict): epoch or step, lr and other meta info should be saved.
"""
"""
configs
=
{}
if
checkpoint_path
is
not
None
:
if
checkpoint_path
is
not
None
:
iteration
=
int
(
os
.
path
.
basename
(
checkpoint_path
).
split
(
":"
)[
-
1
])
iteration
=
int
(
os
.
path
.
basename
(
checkpoint_path
).
split
(
":"
)[
-
1
])
elif
checkpoint_dir
is
not
None
:
elif
checkpoint_dir
is
not
None
:
iteration
=
_load_latest_checkpoint
(
checkpoint_dir
)
iteration
=
_load_latest_checkpoint
(
checkpoint_dir
)
checkpoint_path
=
os
.
path
.
join
(
checkpoint_dir
,
"-{}"
.
format
(
iteration
))
if
iteration
==
-
1
:
return
configs
checkpoint_path
=
os
.
path
.
join
(
checkpoint_dir
,
"{}"
.
format
(
iteration
))
else
:
else
:
raise
ValueError
(
raise
ValueError
(
"At least one of 'checkpoint_dir' and 'checkpoint_path' should be specified!"
"At least one of 'checkpoint_dir' and 'checkpoint_path' should be specified!"
...
@@ -104,7 +108,6 @@ def load_parameters(model,
...
@@ -104,7 +108,6 @@ def load_parameters(model,
rank
,
optimizer_path
))
rank
,
optimizer_path
))
info_path
=
re
.
sub
(
'.pdparams$'
,
'.json'
,
params_path
)
info_path
=
re
.
sub
(
'.pdparams$'
,
'.json'
,
params_path
)
configs
=
{}
if
os
.
path
.
exists
(
info_path
):
if
os
.
path
.
exists
(
info_path
):
with
open
(
info_path
,
'r'
)
as
fin
:
with
open
(
info_path
,
'r'
)
as
fin
:
configs
=
json
.
load
(
fin
)
configs
=
json
.
load
(
fin
)
...
@@ -128,7 +131,7 @@ def save_parameters(checkpoint_dir: str,
...
@@ -128,7 +131,7 @@ def save_parameters(checkpoint_dir: str,
Returns:
Returns:
None
None
"""
"""
checkpoint_path
=
os
.
path
.
join
(
checkpoint_dir
,
"
-
{}"
.
format
(
iteration
))
checkpoint_path
=
os
.
path
.
join
(
checkpoint_dir
,
"{}"
.
format
(
iteration
))
model_dict
=
model
.
state_dict
()
model_dict
=
model
.
state_dict
()
params_path
=
checkpoint_path
+
".pdparams"
params_path
=
checkpoint_path
+
".pdparams"
...
...
deepspeech/utils/utility.py
浏览文件 @
e5641ca4
...
@@ -16,6 +16,7 @@
...
@@ -16,6 +16,7 @@
import
math
import
math
import
numpy
as
np
import
numpy
as
np
import
distutils.util
import
distutils.util
from
typing
import
List
__all__
=
[
'print_arguments'
,
'add_arguments'
,
"log_add"
]
__all__
=
[
'print_arguments'
,
'add_arguments'
,
"log_add"
]
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录