提交 d21ccd02 编写于 作者: X xiongxinlei

add conformer online server, test=doc

上级 af484fc9
......@@ -91,6 +91,20 @@ pretrained_models = {
'https://deepspeech.bj.bcebos.com/zh_lm/zh_giga.no_cna_cmn.prune01244.klm',
'lm_md5':
'29e02312deb2e59b3c8686c7966d4fe3'
},
"conformer2online_aishell-zh-16k": {
'url':
'https://paddlespeech.bj.bcebos.com/s2t/aishell/asr1/asr1_chunk_conformer_aishell_ckpt_0.1.2.model.tar.gz',
'md5':
'4814e52e0fc2fd48899373f95c84b0c9',
'cfg_path':
'config.yaml',
'ckpt_path':
'exp/deepspeech2_online/checkpoints/avg_30',
'lm_url':
'https://deepspeech.bj.bcebos.com/zh_lm/zh_giga.no_cna_cmn.prune01244.klm',
'lm_md5':
'29e02312deb2e59b3c8686c7966d4fe3'
},
"deepspeech2offline_librispeech-en-16k": {
'url':
......@@ -115,6 +129,8 @@ model_alias = {
"paddlespeech.s2t.models.ds2_online:DeepSpeech2ModelOnline",
"conformer":
"paddlespeech.s2t.models.u2:U2Model",
"conformer2online":
"paddlespeech.s2t.models.u2:U2Model",
"transformer":
"paddlespeech.s2t.models.u2:U2Model",
"wenetspeech":
......@@ -219,6 +235,7 @@ class ASRExecutor(BaseExecutor):
"""
Init model and other resources from a specific path.
"""
logger.info("start to init the model")
if hasattr(self, 'model'):
logger.info('Model had been initialized.')
return
......@@ -233,14 +250,15 @@ class ASRExecutor(BaseExecutor):
self.ckpt_path = os.path.join(
res_path, pretrained_models[tag]['ckpt_path'] + ".pdparams")
logger.info(res_path)
logger.info(self.cfg_path)
logger.info(self.ckpt_path)
else:
self.cfg_path = os.path.abspath(cfg_path)
self.ckpt_path = os.path.abspath(ckpt_path + ".pdparams")
self.res_path = os.path.dirname(
os.path.dirname(os.path.abspath(self.cfg_path)))
logger.info(self.cfg_path)
logger.info(self.ckpt_path)
#Init body.
self.config = CfgNode(new_allowed=True)
self.config.merge_from_file(self.cfg_path)
......@@ -269,7 +287,6 @@ class ASRExecutor(BaseExecutor):
vocab=self.config.vocab_filepath,
spm_model_prefix=self.config.spm_model_prefix)
self.config.decode.decoding_method = decode_method
else:
raise Exception("wrong type")
model_name = model_type[:model_type.rindex(
......@@ -347,12 +364,14 @@ class ASRExecutor(BaseExecutor):
else:
raise Exception("wrong type")
logger.info("audio feat process success")
@paddle.no_grad()
def infer(self, model_type: str):
"""
Model inference and result stored in self.output.
"""
logger.info("start to infer the model to get the output")
cfg = self.config.decode
audio = self._inputs["audio"]
audio_len = self._inputs["audio_len"]
......@@ -369,17 +388,22 @@ class ASRExecutor(BaseExecutor):
self._outputs["result"] = result_transcripts[0]
elif "conformer" in model_type or "transformer" in model_type:
result_transcripts = self.model.decode(
audio,
audio_len,
text_feature=self.text_feature,
decoding_method=cfg.decoding_method,
beam_size=cfg.beam_size,
ctc_weight=cfg.ctc_weight,
decoding_chunk_size=cfg.decoding_chunk_size,
num_decoding_left_chunks=cfg.num_decoding_left_chunks,
simulate_streaming=cfg.simulate_streaming)
self._outputs["result"] = result_transcripts[0][0]
logger.info(f"we will use the transformer like model : {model_type}")
try:
result_transcripts = self.model.decode(
audio,
audio_len,
text_feature=self.text_feature,
decoding_method=cfg.decoding_method,
beam_size=cfg.beam_size,
ctc_weight=cfg.ctc_weight,
decoding_chunk_size=cfg.decoding_chunk_size,
num_decoding_left_chunks=cfg.num_decoding_left_chunks,
simulate_streaming=cfg.simulate_streaming)
self._outputs["result"] = result_transcripts[0][0]
except Exception as e:
logger.exception(e)
else:
raise Exception("invalid model name")
......
......@@ -213,12 +213,14 @@ class U2BaseModel(ASRInterface, nn.Layer):
num_decoding_left_chunks=num_decoding_left_chunks
) # (B, maxlen, encoder_dim)
else:
print("offline decode from the asr")
encoder_out, encoder_mask = self.encoder(
speech,
speech_lengths,
decoding_chunk_size=decoding_chunk_size,
num_decoding_left_chunks=num_decoding_left_chunks
) # (B, maxlen, encoder_dim)
print("offline decode success")
return encoder_out, encoder_mask
def recognize(
......@@ -706,13 +708,15 @@ class U2BaseModel(ASRInterface, nn.Layer):
List[List[int]]: transcripts.
"""
batch_size = feats.shape[0]
print("start to decode the audio feat")
if decoding_method in ['ctc_prefix_beam_search',
'attention_rescoring'] and batch_size > 1:
logger.fatal(
logger.error(
f'decoding mode {decoding_method} must be running with batch_size == 1'
)
logger.error(f"current batch_size is {batch_size}")
sys.exit(1)
print(f"use the {decoding_method} to decode the audio feat")
if decoding_method == 'attention':
hyps = self.recognize(
feats,
......
......@@ -180,7 +180,8 @@ class CTCDecoder(CTCDecoderBase):
# init once
if self._ext_scorer is not None:
return
from paddlespeech.s2t.decoders.ctcdecoder import Scorer # noqa: F401
if language_model_path != '':
logger.info("begin to initialize the external scorer "
"for decoding")
......
......@@ -317,6 +317,8 @@ class BaseEncoder(nn.Layer):
outputs = []
offset = 0
# Feed forward overlap input step by step
print(f"context: {context}")
print(f"stride: {stride}")
for cur in range(0, num_frames - context + 1, stride):
end = min(cur + decoding_window, num_frames)
chunk_xs = xs[:, cur:end, :]
......
......@@ -4,7 +4,7 @@
# SERVER SETTING #
#################################################################################
host: 0.0.0.0
port: 8091
port: 8096
# The task format in the engin_list is: <speech task>_<engine type>
# task choices = ['asr_online', 'tts_online']
......@@ -18,10 +18,44 @@ engine_list: ['asr_online']
# ENGINE CONFIG #
#################################################################################
# ################################### ASR #########################################
# ################### speech task: asr; engine_type: online #######################
# asr_online:
# model_type: 'deepspeech2online_aishell'
# am_model: # the pdmodel file of am static model [optional]
# am_params: # the pdiparams file of am static model [optional]
# lang: 'zh'
# sample_rate: 16000
# cfg_path:
# decode_method:
# force_yes: True
# am_predictor_conf:
# device: # set 'gpu:id' or 'cpu'
# switch_ir_optim: True
# glog_info: False # True -> print glog
# summary: True # False -> do not show predictor config
# chunk_buffer_conf:
# frame_duration_ms: 80
# shift_ms: 40
# sample_rate: 16000
# sample_width: 2
# vad_conf:
# aggressiveness: 2
# sample_rate: 16000
# frame_duration_ms: 20
# sample_width: 2
# padding_ms: 200
# padding_ratio: 0.9
################################### ASR #########################################
################### speech task: asr; engine_type: online #######################
asr_online:
model_type: 'deepspeech2online_aishell'
model_type: 'conformer2online_aishell'
am_model: # the pdmodel file of am static model [optional]
am_params: # the pdiparams file of am static model [optional]
lang: 'zh'
......@@ -37,15 +71,15 @@ asr_online:
summary: True # False -> do not show predictor config
chunk_buffer_conf:
frame_duration_ms: 80
frame_duration_ms: 85
shift_ms: 40
sample_rate: 16000
sample_width: 2
vad_conf:
aggressiveness: 2
sample_rate: 16000
frame_duration_ms: 20
sample_width: 2
padding_ms: 200
padding_ratio: 0.9
# vad_conf:
# aggressiveness: 2
# sample_rate: 16000
# frame_duration_ms: 20
# sample_width: 2
# padding_ms: 200
# padding_ratio: 0.9
\ No newline at end of file
......@@ -20,11 +20,15 @@ from numpy import float32
from yacs.config import CfgNode
from paddlespeech.cli.asr.infer import ASRExecutor
from paddlespeech.cli.asr.infer import model_alias
from paddlespeech.cli.asr.infer import pretrained_models
from paddlespeech.cli.log import logger
from paddlespeech.cli.utils import MODEL_HOME
from paddlespeech.s2t.frontend.featurizer.text_featurizer import TextFeaturizer
from paddlespeech.s2t.frontend.speech import SpeechSegment
from paddlespeech.s2t.modules.ctc import CTCDecoder
from paddlespeech.s2t.transform.transformation import Transformation
from paddlespeech.s2t.utils.dynamic_import import dynamic_import
from paddlespeech.s2t.utils.utility import UpdateConfig
from paddlespeech.server.engine.base_engine import BaseEngine
from paddlespeech.server.utils.audio_process import pcm2float
......@@ -51,6 +55,24 @@ pretrained_models = {
'lm_md5':
'29e02312deb2e59b3c8686c7966d4fe3'
},
"conformer2online_aishell-zh-16k": {
'url':
'https://paddlespeech.bj.bcebos.com/s2t/aishell/asr0/asr1_chunk_conformer_aishell_ckpt_0.1.2.model.tar.gz',
'md5':
'4814e52e0fc2fd48899373f95c84b0c9',
'cfg_path':
'exp/chunk_conformer//conf/config.yaml',
'ckpt_path':
'exp/chunk_conformer/checkpoints/avg_30/',
'model':
'exp/chunk_conformer/checkpoints/avg_30.pdparams',
'params':
'exp/chunk_conformer/checkpoints/avg_30.pdparams',
'lm_url':
'https://deepspeech.bj.bcebos.com/zh_lm/zh_giga.no_cna_cmn.prune01244.klm',
'lm_md5':
'29e02312deb2e59b3c8686c7966d4fe3'
},
}
......@@ -71,15 +93,17 @@ class ASRServerExecutor(ASRExecutor):
"""
Init model and other resources from a specific path.
"""
self.model_type = model_type
self.sample_rate = sample_rate
if cfg_path is None or am_model is None or am_params is None:
sample_rate_str = '16k' if sample_rate == 16000 else '8k'
tag = model_type + '-' + lang + '-' + sample_rate_str
logger.info(f"Load the pretrained model, tag = {tag}")
res_path = self._get_pretrained_path(tag) # wenetspeech_zh
self.res_path = res_path
self.cfg_path = os.path.join(res_path,
pretrained_models[tag]['cfg_path'])
self.cfg_path = "/home/users/xiongxinlei/task/paddlespeech-develop/PaddleSpeech/paddlespeech/server/tests/asr/online/conf/config.yaml"
# self.cfg_path = os.path.join(res_path,
# pretrained_models[tag]['cfg_path'])
self.am_model = os.path.join(res_path,
pretrained_models[tag]['model'])
......@@ -119,49 +143,67 @@ class ASRServerExecutor(ASRExecutor):
lm_url,
os.path.dirname(self.config.decode.lang_model_path), lm_md5)
elif "conformer" in model_type or "transformer" in model_type or "wenetspeech" in model_type:
# 开发 conformer 的流式模型
logger.info("start to create the stream conformer asr engine")
# 复用cli里面的代码
if self.config.spm_model_prefix:
self.config.spm_model_prefix = os.path.join(
self.res_path, self.config.spm_model_prefix)
self.config.vocab_filepath = os.path.join(
self.res_path, self.config.vocab_filepath)
self.text_feature = TextFeaturizer(
unit_type=self.config.unit_type,
vocab=self.config.vocab_filepath,
spm_model_prefix=self.config.spm_model_prefix)
# update the decoding method
if decode_method:
self.config.decode.decoding_method = decode_method
else:
raise Exception("wrong type")
# AM predictor
logger.info("ASR engine start to init the am predictor")
self.am_predictor_conf = am_predictor_conf
self.am_predictor = init_predictor(
model_file=self.am_model,
params_file=self.am_params,
predictor_conf=self.am_predictor_conf)
# decoder
logger.info("ASR engine start to create the ctc decoder instance")
self.decoder = CTCDecoder(
odim=self.config.output_dim, # <blank> is in vocab
enc_n_units=self.config.rnn_layer_size * 2,
blank_id=self.config.blank_id,
dropout_rate=0.0,
reduction=True, # sum
batch_average=True, # sum / batch_size
grad_norm_type=self.config.get('ctc_grad_norm_type', None))
# init decoder
logger.info("ASR engine start to init the ctc decoder")
cfg = self.config.decode
decode_batch_size = 1 # for online
self.decoder.init_decoder(
decode_batch_size, self.text_feature.vocab_list,
cfg.decoding_method, cfg.lang_model_path, cfg.alpha, cfg.beta,
cfg.beam_size, cfg.cutoff_prob, cfg.cutoff_top_n,
cfg.num_proc_bsearch)
# init state box
self.chunk_state_h_box = np.zeros(
(self.config.num_rnn_layers, 1, self.config.rnn_layer_size),
dtype=float32)
self.chunk_state_c_box = np.zeros(
(self.config.num_rnn_layers, 1, self.config.rnn_layer_size),
dtype=float32)
if "deepspeech2online" in model_type or "deepspeech2offline" in model_type:
# AM predictor
logger.info("ASR engine start to init the am predictor")
self.am_predictor_conf = am_predictor_conf
self.am_predictor = init_predictor(
model_file=self.am_model,
params_file=self.am_params,
predictor_conf=self.am_predictor_conf)
# decoder
logger.info("ASR engine start to create the ctc decoder instance")
self.decoder = CTCDecoder(
odim=self.config.output_dim, # <blank> is in vocab
enc_n_units=self.config.rnn_layer_size * 2,
blank_id=self.config.blank_id,
dropout_rate=0.0,
reduction=True, # sum
batch_average=True, # sum / batch_size
grad_norm_type=self.config.get('ctc_grad_norm_type', None))
# init decoder
logger.info("ASR engine start to init the ctc decoder")
cfg = self.config.decode
decode_batch_size = 1 # for online
self.decoder.init_decoder(
decode_batch_size, self.text_feature.vocab_list,
cfg.decoding_method, cfg.lang_model_path, cfg.alpha, cfg.beta,
cfg.beam_size, cfg.cutoff_prob, cfg.cutoff_top_n,
cfg.num_proc_bsearch)
# init state box
self.chunk_state_h_box = np.zeros(
(self.config.num_rnn_layers, 1, self.config.rnn_layer_size),
dtype=float32)
self.chunk_state_c_box = np.zeros(
(self.config.num_rnn_layers, 1, self.config.rnn_layer_size),
dtype=float32)
elif "conformer" in model_type or "transformer" in model_type or "wenetspeech" in model_type:
model_name = model_type[:model_type.rindex(
'_')] # model_type: {model_name}_{dataset}
logger.info(f"model name: {model_name}")
model_class = dynamic_import(model_name, model_alias)
model_conf = self.config
model = model_class.from_config(model_conf)
self.model = model
logger.info("create the transformer like model success")
def reset_decoder_and_chunk(self):
"""reset decoder and chunk state for an new audio
......@@ -186,6 +228,7 @@ class ASRServerExecutor(ASRExecutor):
Returns:
[type]: [description]
"""
logger.info("start to decoce chunk by chunk")
if "deepspeech2online" in model_type:
input_names = self.am_predictor.get_input_names()
audio_handle = self.am_predictor.get_input_handle(input_names[0])
......@@ -224,10 +267,29 @@ class ASRServerExecutor(ASRExecutor):
self.decoder.next(output_chunk_probs, output_chunk_lens)
trans_best, trans_beam = self.decoder.decode()
logger.info(f"decode one one best result: {trans_best[0]}")
return trans_best[0]
elif "conformer" in model_type or "transformer" in model_type:
raise Exception("invalid model name")
try:
logger.info(
f"we will use the transformer like model : {self.model_type}"
)
cfg = self.config.decode
result_transcripts = self.model.decode(
x_chunk,
x_chunk_lens,
text_feature=self.text_feature,
decoding_method=cfg.decoding_method,
beam_size=cfg.beam_size,
ctc_weight=cfg.ctc_weight,
decoding_chunk_size=cfg.decoding_chunk_size,
num_decoding_left_chunks=cfg.num_decoding_left_chunks,
simulate_streaming=cfg.simulate_streaming)
return result_transcripts[0][0]
except Exception as e:
logger.exception(e)
else:
raise Exception("invalid model name")
......@@ -244,32 +306,55 @@ class ASRServerExecutor(ASRExecutor):
"""
# pcm16 -> pcm 32
samples = pcm2float(samples)
# read audio
speech_segment = SpeechSegment.from_pcm(
samples, sample_rate, transcript=" ")
# audio augment
self.collate_fn_test.augmentation.transform_audio(speech_segment)
# extract speech feature
spectrum, transcript_part = self.collate_fn_test._speech_featurizer.featurize(
speech_segment, self.collate_fn_test.keep_transcription_text)
# CMVN spectrum
if self.collate_fn_test._normalizer:
spectrum = self.collate_fn_test._normalizer.apply(spectrum)
# spectrum augment
audio = self.collate_fn_test.augmentation.transform_feature(spectrum)
audio_len = audio.shape[0]
audio = paddle.to_tensor(audio, dtype='float32')
# audio_len = paddle.to_tensor(audio_len)
audio = paddle.unsqueeze(audio, axis=0)
x_chunk = audio.numpy()
x_chunk_lens = np.array([audio_len])
return x_chunk, x_chunk_lens
if "deepspeech2online" in self.model_type:
# read audio
speech_segment = SpeechSegment.from_pcm(
samples, sample_rate, transcript=" ")
# audio augment
self.collate_fn_test.augmentation.transform_audio(speech_segment)
# extract speech feature
spectrum, transcript_part = self.collate_fn_test._speech_featurizer.featurize(
speech_segment, self.collate_fn_test.keep_transcription_text)
# CMVN spectrum
if self.collate_fn_test._normalizer:
spectrum = self.collate_fn_test._normalizer.apply(spectrum)
# spectrum augment
audio = self.collate_fn_test.augmentation.transform_feature(
spectrum)
audio_len = audio.shape[0]
audio = paddle.to_tensor(audio, dtype='float32')
# audio_len = paddle.to_tensor(audio_len)
audio = paddle.unsqueeze(audio, axis=0)
x_chunk = audio.numpy()
x_chunk_lens = np.array([audio_len])
return x_chunk, x_chunk_lens
elif "conformer2online" in self.model_type:
if sample_rate != self.sample_rate:
logger.info(f"audio sample rate {sample_rate} is not match," \
"the model sample_rate is {self.sample_rate}")
logger.info(f"ASR Engine use the {self.model_type} to process")
logger.info("Create the preprocess instance")
preprocess_conf = self.config.preprocess_config
preprocess_args = {"train": False}
preprocessing = Transformation(preprocess_conf)
logger.info("Read the audio file")
logger.info(f"audio shape: {samples.shape}")
# fbank
x_chunk = preprocessing(samples, **preprocess_args)
x_chunk_lens = paddle.to_tensor(x_chunk.shape[0])
x_chunk = paddle.to_tensor(
x_chunk, dtype="float32").unsqueeze(axis=0)
logger.info(
f"process the audio feature success, feat shape: {x_chunk.shape}"
)
return x_chunk, x_chunk_lens
class ASREngine(BaseEngine):
......@@ -310,7 +395,10 @@ class ASREngine(BaseEngine):
logger.info("Initialize ASR server engine successfully.")
return True
def preprocess(self, samples, sample_rate):
def preprocess(self,
samples,
sample_rate,
model_type="deepspeech2online_aishell-zh-16k"):
"""preprocess
Args:
......@@ -321,6 +409,7 @@ class ASREngine(BaseEngine):
x_chunk (numpy.array): shape[B, T, D]
x_chunk_lens (numpy.array): shape[B]
"""
# if "deepspeech" in model_type:
x_chunk, x_chunk_lens = self.executor.extract_feat(samples, sample_rate)
return x_chunk, x_chunk_lens
......
......@@ -103,7 +103,7 @@ class ASRAudioHandler:
def main(args):
logging.basicConfig(level=logging.INFO)
logging.info("asr websocket client start")
handler = ASRAudioHandler("127.0.0.1", 8090)
handler = ASRAudioHandler("127.0.0.1", 8096)
loop = asyncio.get_event_loop()
# support to process single audio file
......
......@@ -14,6 +14,7 @@
import json
import numpy as np
import json
from fastapi import APIRouter
from fastapi import WebSocket
from fastapi import WebSocketDisconnect
......@@ -28,7 +29,7 @@ router = APIRouter()
@router.websocket('/ws/asr')
async def websocket_endpoint(websocket: WebSocket):
print("websocket protocal receive the dataset")
await websocket.accept()
engine_pool = get_engine_pool()
......@@ -36,14 +37,18 @@ async def websocket_endpoint(websocket: WebSocket):
# init buffer
chunk_buffer_conf = asr_engine.config.chunk_buffer_conf
chunk_buffer = ChunkBuffer(
frame_duration_ms=chunk_buffer_conf['frame_duration_ms'],
sample_rate=chunk_buffer_conf['sample_rate'],
sample_width=chunk_buffer_conf['sample_width'])
# init vad
vad_conf = asr_engine.config.vad_conf
vad = VADAudio(
aggressiveness=vad_conf['aggressiveness'],
rate=vad_conf['sample_rate'],
frame_duration_ms=vad_conf['frame_duration_ms'])
# print(asr_engine.config)
# print(type(asr_engine.config))
vad_conf = asr_engine.config.get('vad_conf', None)
if vad_conf:
vad = VADAudio(
aggressiveness=vad_conf['aggressiveness'],
rate=vad_conf['sample_rate'],
frame_duration_ms=vad_conf['frame_duration_ms'])
try:
while True:
......@@ -65,7 +70,7 @@ async def websocket_endpoint(websocket: WebSocket):
engine_pool = get_engine_pool()
asr_engine = engine_pool['asr']
# reset single engine for an new connection
asr_engine.reset()
# asr_engine.reset()
resp = {"status": "ok", "signal": "finished"}
await websocket.send_json(resp)
break
......@@ -75,16 +80,16 @@ async def websocket_endpoint(websocket: WebSocket):
elif "bytes" in message:
message = message["bytes"]
# vad for input bytes audio
vad.add_audio(message)
message = b''.join(f for f in vad.vad_collector()
if f is not None)
# # vad for input bytes audio
# vad.add_audio(message)
# message = b''.join(f for f in vad.vad_collector()
# if f is not None)
engine_pool = get_engine_pool()
asr_engine = engine_pool['asr']
asr_results = ""
frames = chunk_buffer.frame_generator(message)
for frame in frames:
# get the pcm data from the bytes
samples = np.frombuffer(frame.bytes, dtype=np.int16)
sample_rate = asr_engine.config.sample_rate
x_chunk, x_chunk_lens = asr_engine.preprocess(samples,
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册