Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
DeepSpeech
提交
cc2a4d4e
D
DeepSpeech
项目概览
PaddlePaddle
/
DeepSpeech
大约 2 年 前同步成功
通知
210
Star
8425
Fork
1598
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
245
列表
看板
标记
里程碑
合并请求
3
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
D
DeepSpeech
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
245
Issue
245
列表
看板
标记
里程碑
合并请求
3
合并请求
3
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
cc2a4d4e
编写于
6月 08, 2017
作者:
Y
yangyaming
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Add error rate calculation script.
上级
730d5c4d
变更
1
隐藏空白更改
内联
并排
Showing
1 changed file
with
138 addition
and
0 deletion
+138
-0
error_rate.py
error_rate.py
+138
-0
未找到文件。
error_rate.py
0 → 100644
浏览文件 @
cc2a4d4e
# -- * -- coding: utf-8 -- * --
import
numpy
as
np
def
levenshtein_distance
(
ref
,
hyp
):
ref_len
=
len
(
ref
)
hyp_len
=
len
(
hyp
)
# special case
if
ref
==
hyp
:
return
0
if
ref_len
==
0
:
return
hyp_len
if
hyp_len
==
0
:
return
ref_len
distance
=
np
.
zeros
((
ref_len
+
1
)
*
(
hyp_len
+
1
),
dtype
=
np
.
int64
)
distance
=
distance
.
reshape
((
ref_len
+
1
,
hyp_len
+
1
))
# initialization distance matrix
for
j
in
xrange
(
hyp_len
+
1
):
distance
[
0
][
j
]
=
j
for
i
in
xrange
(
ref_len
+
1
):
distance
[
i
][
0
]
=
i
# calculate levenshtein distance
for
i
in
xrange
(
1
,
ref_len
+
1
):
for
j
in
xrange
(
1
,
hyp_len
+
1
):
if
ref
[
i
-
1
]
==
hyp
[
j
-
1
]:
distance
[
i
][
j
]
=
distance
[
i
-
1
][
j
-
1
]
else
:
s_num
=
distance
[
i
-
1
][
j
-
1
]
+
1
i_num
=
distance
[
i
][
j
-
1
]
+
1
d_num
=
distance
[
i
-
1
][
j
]
+
1
distance
[
i
][
j
]
=
min
(
s_num
,
i_num
,
d_num
)
return
distance
[
ref_len
][
hyp_len
]
def
wer
(
reference
,
hypophysis
,
delimiter
=
' '
,
filter_none
=
True
):
"""
Calculate word error rate (WER). WER is a popular evaluation metric used
in speech recognition. It compares a reference to an hypophysis and
is defined like this:
.. math::
WER = (Sw + Dw + Iw) / Nw
where
.. code-block:: text
Sw is the number of words subsituted,
Dw is the number of words deleted,
Iw is the number of words inserted,
Nw is the number of words in the reference
We can use levenshtein distance to calculate WER. Take an attention that
this function will truncate the beginning and ending delimiter for
reference and hypophysis sentences before calculating WER.
:param reference: The reference sentence.
:type reference: str
:param hypophysis: The hypophysis sentence.
:type reference: str
:param delimiter: Delimiter of input sentences.
:type delimiter: char
:param filter_none: Whether to remove None value when splitting sentence.
:type filter_none: bool
:return: WER
:rtype: float
"""
if
len
(
reference
.
strip
(
delimiter
))
==
0
:
raise
ValueError
(
"Reference's word number should be greater than 0."
)
if
filter_none
==
True
:
ref_words
=
filter
(
None
,
reference
.
strip
(
delimiter
).
split
(
delimiter
))
hyp_words
=
filter
(
None
,
hypophysis
.
strip
(
delimiter
).
split
(
delimiter
))
else
:
ref_words
=
reference
.
strip
(
delimiter
).
split
(
delimiter
)
hyp_words
=
reference
.
strip
(
delimiter
).
split
(
delimiter
)
edit_distance
=
levenshtein_distance
(
ref_words
,
hyp_words
)
wer
=
float
(
edit_distance
)
/
len
(
ref_words
)
return
wer
def
cer
(
reference
,
hypophysis
,
squeeze
=
True
,
ignore_case
=
False
,
strip_char
=
''
):
"""
Calculate charactor error rate (CER). CER will compare reference text and
hypophysis text in char-level. CER is defined as:
.. math::
CER = (Sc + Dc + Ic) / Nc
where
.. code-block:: text
Sc is the number of character substituted,
Dc is the number of deleted,
Ic is the number of inserted
Nc is the number of characters in the reference
We can use levenshtein distance to calculate CER. Chinese input should be
encoded to unicode.
:param reference: The reference sentence.
:type reference: str
:param hypophysis: The hypophysis sentence.
:type reference: str
:param squeeze: If set true, consecutive space character
will be squeezed to one
:type squeezed: bool
:param ignore_case: Whether ignoring character case.
:type ignore_case: bool
:param strip_char: If not set to '', strip_char in beginning and ending of
sentence will be truncated.
:type strip_char: char
:return: CER
:rtype: float
"""
if
ignore_case
==
True
:
reference
=
reference
.
lower
()
hypophysis
=
hypophysis
.
lower
()
if
strip_char
!=
''
:
reference
=
reference
.
strip
(
strip_char
)
hypophysis
=
hypophysis
.
strip
(
strip_char
)
if
squeeze
==
True
:
reference
=
' '
.
join
(
filter
(
None
,
reference
.
split
(
' '
)))
hypophysis
=
' '
.
join
(
filter
(
None
,
hypophysis
.
split
(
' '
)))
if
len
(
reference
)
==
0
:
raise
ValueError
(
"Length of reference should be greater than 0."
)
edit_distance
=
levenshtein_distance
(
reference
,
hypophysis
)
cer
=
float
(
edit_distance
)
/
len
(
reference
)
return
cer
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录