未验证 提交 bbf313e4 编写于 作者: H Hui Zhang 提交者: GitHub

Merge pull request #661 from PaddlePaddle/conf

add stream conf
...@@ -15,5 +15,20 @@ ...@@ -15,5 +15,20 @@
"max_shift_ms": 5 "max_shift_ms": 5
}, },
"prob": 1.0 "prob": 1.0
},
{
"type": "specaug",
"params": {
"F": 10,
"T": 50,
"n_freq_masks": 2,
"n_time_masks": 2,
"p": 1.0,
"W": 80,
"adaptive_number_ratio": 0,
"adaptive_size_ratio": 0,
"max_n_time_masks": 20
},
"prob": 1.0
} }
] ]
...@@ -93,7 +93,7 @@ training: ...@@ -93,7 +93,7 @@ training:
decoding: decoding:
batch_size: 1 batch_size: 128
error_rate_type: cer error_rate_type: cer
decoding_method: attention # 'attention', 'ctc_greedy_search', 'ctc_prefix_beam_search', 'attention_rescoring' decoding_method: attention # 'attention', 'ctc_greedy_search', 'ctc_prefix_beam_search', 'attention_rescoring'
lang_model_path: data/lm/common_crawl_00.prune01111.trie.klm lang_model_path: data/lm/common_crawl_00.prune01111.trie.klm
...@@ -104,11 +104,11 @@ decoding: ...@@ -104,11 +104,11 @@ decoding:
cutoff_top_n: 0 cutoff_top_n: 0
num_proc_bsearch: 8 num_proc_bsearch: 8
ctc_weight: 0.5 # ctc weight for attention rescoring decode mode. ctc_weight: 0.5 # ctc weight for attention rescoring decode mode.
decoding_chunk_size: 16 # decoding chunk size. Defaults to -1. decoding_chunk_size: -1 # decoding chunk size. Defaults to -1.
# <0: for decoding, use full chunk. # <0: for decoding, use full chunk.
# >0: for decoding, use fixed chunk size as set. # >0: for decoding, use fixed chunk size as set.
# 0: used for training, it's prohibited here. # 0: used for training, it's prohibited here.
num_decoding_left_chunks: -1 # number of left chunks for decoding. Defaults to -1. num_decoding_left_chunks: -1 # number of left chunks for decoding. Defaults to -1.
simulate_streaming: True # simulate streaming inference. Defaults to False. simulate_streaming: true # simulate streaming inference. Defaults to False.
...@@ -56,7 +56,7 @@ model: ...@@ -56,7 +56,7 @@ model:
pos_enc_layer_type: 'rel_pos' pos_enc_layer_type: 'rel_pos'
selfattention_layer_type: 'rel_selfattn' selfattention_layer_type: 'rel_selfattn'
causal: True causal: True
use_dynamic_chunk: True use_dynamic_chunk: true
cnn_module_norm: 'layer_norm' # using nn.LayerNorm makes model converge faster cnn_module_norm: 'layer_norm' # using nn.LayerNorm makes model converge faster
use_dynamic_left_chunk: false use_dynamic_left_chunk: false
...@@ -110,6 +110,6 @@ decoding: ...@@ -110,6 +110,6 @@ decoding:
# >0: for decoding, use fixed chunk size as set. # >0: for decoding, use fixed chunk size as set.
# 0: used for training, it's prohibited here. # 0: used for training, it's prohibited here.
num_decoding_left_chunks: -1 # number of left chunks for decoding. Defaults to -1. num_decoding_left_chunks: -1 # number of left chunks for decoding. Defaults to -1.
simulate_streaming: False # simulate streaming inference. Defaults to False. simulate_streaming: true # simulate streaming inference. Defaults to False.
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册